Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 398, 2010
Article Number 06
Number of page(s) 15
DOI https://doi.org/10.1051/kmae/2010029
Published online 14 October 2010
  • Azrina M.Z., Yap C.K., Rahim Ismail A.,Ismail A. andTan S.G., 2006. Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotox. Environ. Safe., 64, 337–347. [CrossRef] [PubMed] [Google Scholar]
  • Benstead J.P., De Rham P.H.,Gattolliat J.-L.,Gibon F.-M.,Loiselle P.V.,Sartori M.,Sparks J.S. andStiassny M.L.J., 2003. Conserving Madagascar’s freshwater biodiversity. Bioscience, 53, 1101–1111. [CrossRef] [Google Scholar]
  • Brosse S. and Lek S., 2002. Relationship between environmental characteristics and the density of age-0 Eurasian Perch Perca fluviatilis in littoral zone of lake: a nonlinear approach. T. Am. Fish. Soc., 131, 1033–1043. [CrossRef] [Google Scholar]
  • Brosse S., Grossman G.D. and Lek S., 2007. Fish assemblage patterns in the littoral zone of a European reservoir. Freshwater Biol., 52, 448–458. [CrossRef] [Google Scholar]
  • Chon T.S., Park Y.S., Moon K.H., Cha E. and Pa Y., 1996. Patternizing communities by using an artificial neural network. Ecol. Model., 90, 69–78. [CrossRef] [Google Scholar]
  • Cummins K.W., 1979. The natural stream ecosystem. In: Ward J.V. and Standford J.A. (eds.), The Ecology of Regulated Streams, Plenum Press, New York, 7–24. [Google Scholar]
  • de Moor I.J., Day J.A. and de Moor F.C., 2003a. Guides to the Freshwater Invertebrates of Southern Africa, Volume 7, Insecta I: Ephemeroptera, Odonata and Plecoptera, WRC report N° TT 207/03, South Africa, 288 p. [Google Scholar]
  • de Moor I.J., Day J.A. and de Moor F.C., 2003b. Guides to the Freshwater Invertebrates of Southern Africa. Volume 8, Insecta II: Hemiptera, Megaloptera, Neuroptera, Trichoptera and Lepidoptera, WRC report N° TT 214/03, South Africa, 209 p. [Google Scholar]
  • de Thoisy B., Brosse S. and Dubois M., 2008. Assessment of large-vertebrate species richness and abundance in neotropical forest using line-transect censuses: what is the minimal effort required? Biodivers. Conserv., 17, 2627–2644. [CrossRef] [Google Scholar]
  • Day J.A., Harrison A.D. and de Moor I.J., 2002. Guides to the Freshwater Invertebrates of Southern Africa, Volume 9: Diptera, WRC report N° TT 201/02, South Africa, 200 p. [Google Scholar]
  • Dejoux C., Elouard J.M., Forge P. and Maslin J.L., 1981. Catalogue Iconographique des Insectes Aquatiques de Côte d’Ivoire, Report ORSTOM, Bouaké, Ivory Coast, 172 p. [Google Scholar]
  • Diétoa Y.M., 2002. Entomofaune et stratégies alimentaires des poissons du genre Brycinus (Characidae) en milieux fluviatiles et lacustres (Bassins Bia et Agnéby ; Côte d’Ivoire). Ph.D. thesis, University of Abobo-Adjamé, Abidjan, Ivory Coast, 261 p. [Google Scholar]
  • Diomandé D., 2001. Macrofaune benthique et stratégies alimentaires de Synodontis bastiani et S. schall en milieu fluvio-lacustre (Bassins Bia et Agnébi, Côte d’Ivoire). Ph.D. thesis, University of Abobo-Adjamé, Abidjan, Ivory Coast, 260 p. [Google Scholar]
  • Edia O.E., Brosse S., Ouattara A., Gourène G., Winterton P. and Lek-Ang S., 2007. Aquatic insect assemblage patterns in four West-African coastal rivers. J. Biol. Sci., 7, 1130–1138. [CrossRef] [Google Scholar]
  • Freeman M.C.,Pringle C.M. andJackson C.R., 2007. Hydrologic connectivity and contribution of stream headwaters in ecological integrity at regional scales. J. Am. Water Resour. As., 43, 5–14. [CrossRef] [Google Scholar]
  • Galdean N. andStaicu G., 1997. The carrying capacity assessment of the lotic system Crisul Repede (Tisa Area Catchment, Romania), based on faunistical analysis. Trav. Mus. Natl. Hist. Nat. ‘Grigore Antipa’, 37, 237–254. [Google Scholar]
  • Gayraud S., 2001. Les sédiments du lit des cours d’eau : quantification de leur influence sur les peuplements de macroinvertébrés par une approche multi-sites. Ph.D. thesis, University Claude Bernard, Lyon, France, 188 p. [Google Scholar]
  • Gevrey M., Dimopoulos I., and Lek S., 2003. Review and comparison of methods to study the contribution of variables in Artificial Neural Network models. Ecol. Model., 160, 249–264. [CrossRef] [Google Scholar]
  • Gevrey M., Park Y.S., Verdonschot P.F.M. and Lek S., 2005. Predicting Dutch macroinvertebrate species richness and functional feeding groups using five modelling techniques. In: Lek S., Scardi M., Verdonschot P.F.M., Descy J.P. and Park Y.S. (eds.), Modelling Community Structure in Freshwater Ecosystems, Springer, Berlin, 158–166. [Google Scholar]
  • Gordon N.D., McMahon T.A. and Finlayson B.L., 1994. Stream Hydrology, an Introduction for Ecologists, John Wiley and Sons, New York, 526 p. [Google Scholar]
  • Hawkins C.P., Norris R.H., Hogue J.N. and Feminela J.W., 2000. Development and evaluation of predictive models for measuring the biological integrity. Ecol. Appl., 10, 1456–1477. [CrossRef] [Google Scholar]
  • Hellawell J.M., 1986. Biological Indicators of Freshwater Pollution and Environmental Management, Elsevier, London, 546 p. [Google Scholar]
  • Justic D.,Rabelais N.N.,Turner R.E. andDortch Q., 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Est. Coast. Shelf Sci., 40, 339–356. [CrossRef] [Google Scholar]
  • Kohavi R., 1995. A study of cross-validation and bootstrap for estimation and model selection. In: 14th International Joint Conference on Artificial Intelligence, Montréal, Canada, 1137–1143. [Google Scholar]
  • Kohonen T., 1982. Self-organized formation of topologically correct feature maps. Biol. Cybern., 43, 59–69. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kohonen T., 2001. Self-Organizing Maps, 3rd edition, Springer, Berlin, 501 p. [Google Scholar]
  • Legendre P. and Legendre L., 1998. Numerical ecology, Elsevier, Amsterdam, 853 p. [Google Scholar]
  • Lek S. and Guégan J.F., 1999. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model., 120, 65–73. [CrossRef] [Google Scholar]
  • Lek S. and Guégan J.F., 2000. Artificial Neuronal Networks: Application to Ecology and Evolution, Springer-Verlag, Berlin, 262 p. [Google Scholar]
  • Lek S., Delacoste M., Baran P., Dimopoulos J., Lauga J. and Aulagnier S., 1996. Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Model., 90, 39–52. [CrossRef] [Google Scholar]
  • Lek S., Giraudel J.L. and Guégan J.F., 2000. Neuronal networks: algorithms and architectures for ecologists and evolutionary ecologists. In: Lek S. and Guégan J.P. (eds.), Artificial Neuronal Networks: Application to Ecology and Evolution, Springer-Verlag, Berlin, 3–27. [Google Scholar]
  • Lenat D.R., 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. North Am. Benthol. Soc., 7, 222–233. [CrossRef] [Google Scholar]
  • Leprieur F., Hickey M.A., Arbuckle C.J., Closs G.P., Brosse S. and Townsend C.R., 2006. Hydrological disturbance benefits a native fish at the expense of an exotic fish. J. Appl. Ecol., 43, 930–939. [CrossRef] [Google Scholar]
  • Lowrance R., Sharpe J.K. and Sheridan J.M., 1986. Long-term sediment deposition in the riparian zone of a coastal plain watershed. J. Soil Water Conserv., 41, 266–271. [Google Scholar]
  • Malmqvist B. andOtto C., 1987. The influence of substrate stability on the composition of stream benthos: an experimental study. Oikos, 48, 33–38. [CrossRef] [Google Scholar]
  • Matthaei C.D., Peacock K.A. and Townsend C.R., 1999. Patchy surface stone movement during disturbance in a New Zealand stream and its potential significance for fauna. Limnol. Oceanogr., 44, 1091–1102. [CrossRef] [Google Scholar]
  • Naiman R.J., Beechie T.J., Benda L.E., Berg D.R., Bisson P.A., MacDonald L.H., Connor M.D.O., Olson P.L. and Steel E.A., 1992. Fundamental elements of ecologically healthy watersheds in the Pacific Northwest coastal ecoregion. In: Naiman R.J. (ed.), Watershed Management: Balancing Sustainability and Environmental Change, Springer-Verlag, New York, 127–188. [Google Scholar]
  • Norris R.H., 1995. Biological monitoring: the dilemma of data analysis. J. North Am. Benthol. Soc., 14, 440–450. [CrossRef] [Google Scholar]
  • Resh V.H. and Jackson J.K., 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: Rosenberg D.M. and Resh V.H. (eds.), Freshwater Biomonitoring and Benthic Macroinvertebrate, Chapman and Hall, London, 195–223. [Google Scholar]
  • Rosenberg D.M. and Resh V.H., 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates, Chapman & Hall, New York, London, 488 p. [Google Scholar]
  • Rumelhart D.E., Hinton G.E. and Williams R.J., 1986. Learning internal representations by error propagation. In: Rumelhart D.E. and McCelland J.L. (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Foundations, MIT Press, Cambridge, 318–362. [Google Scholar]
  • Sankaré Y., 1991. Étude comparative de la macrofaune associée aux racines de Pistia stratiotes L. (Araceae) du lac de barrage d’Ayamé II et du fleuve Comoé (Côte d’Ivoire). J. Ivoir. Océanol. Limnol., 1, 131–138. [Google Scholar]
  • Schindler D.W., 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos, 57, 25–41. [CrossRef] [Google Scholar]
  • Smogor R.A. and Angermeier P.L., 1999. Effects of drainage basin and anthropogenic disturbance on relations between stream size and IBI metrics in Virginia. In: Simon T.P. (ed.), Assessment Approaches for Estimating Biological Integrity Using Fish Assemblages, Lewis Press, Boca Raton, 249–272. [Google Scholar]
  • Stals R. and de Moor I.J., 2007. Guides to the Freshwater Invertebrates of Southern Africa, Volume 10: Coleoptera, WRC report N° TT 320/07, South Africa, 263 p. [Google Scholar]
  • Townsend C.R., 1989. The patch dynamic concept of stream community ecology. J. North Am. Benthol. Soc., 8, 36–50. [CrossRef] [Google Scholar]
  • Turner R.E. andRabalais N.N., 1994. Coastal eutrophication near the Mississippi River delta. Nature, 368, 619–621. [CrossRef] [Google Scholar]
  • Wiederholm T., 1984. Responses of aquatic insects to environmental pollution. In: Resh V.H. and Rosenberg D.M. (eds.), The Ecology of Aquatic Insects, Praeger Pubs., New York, 508–557. [Google Scholar]
  • Worner S.P. and Gevrey M., 2006. Modelling global insect pest species assemblages to determine risk of invasion. J. Appl. Ecol., 43, 858–867. [CrossRef] [Google Scholar]
  • Wright J.F.,Furse M.T. andArmitage P.D., 1995. R1VPACS: A technique for evaluating the biological quality of rivers in the UK. Eur. Water Pollut. Contr., 3, 15–25. [Google Scholar]
  • Yaméogo L.,Resh V.H. andMolyneux D.H., 2004. Control of rivers blindness in West Africa: Case history of biodiversity in a disease control program. EcoHealth, 1, 172–183. [CrossRef] [Google Scholar]
  • Zar J.H., 1999. Biostatistical Analysis, 4th edition, NJ Prentice Hall, Englewoods Cliffs, New Jersey, 662 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.