Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 396, 2010
Article Number 05
Number of page(s) 13
DOI https://doi.org/10.1051/kmae/2010016
Published online 20 July 2010
  • Arnott S.E. and Vanni M.J., 1993. Zooplankton assemblages in fishless bog lakes – influence of biotic and abiotic factors. Ecology, 74, 2361–2380. [CrossRef] [Google Scholar]
  • Brooks J.L. and Dodson S.I., 1965. Predation, body size, and composition of plankton. Science, 150, 28–35. [CrossRef] [PubMed] [Google Scholar]
  • Brooks S.J., Langdon P.G. and Heiri O., 2007. The identification and use of Palearctic Chironomidae larvae in palaeoecology, QRA Technical Guide, 10, Quaternary Research Association, London. [Google Scholar]
  • Brönmark C. and Hansson L.-A., 2002. Environmental issues in lakes and ponds: current state and perspectives. Environ. Conserv., 29, 290–306. [Google Scholar]
  • Davidson T.A., Sayer C.D., Perrow M.R., Bramm M. and Jeppesen E., 2007. Are the controls of species composition similar for contemporary and sub-fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. J. Paleolimnol., 38, 117–134. [CrossRef] [Google Scholar]
  • Hill M.O. and Šmilauer P., 2005. TWINSPAN for Windows, Version 2.3, Centre for Ecology and Hydrology, University of South Bohemia, Huntington & České Budejovicě. [Google Scholar]
  • Holt C. and Yun N.D., 2003. Recovery of crustacean zooplankton communities from acidification in Killarney Park, Ontario, 1971–2000: pH 6 as a recovery goal. Ambio, 32, 203–207. [PubMed] [Google Scholar]
  • Horppila J., Peltonen H., Malinen T., Luokkanen E. and Kairesalo T., 1998. Top-down or bottom-up effects by fish: Issues of concern in biomanipulation of lakes. Restoration Ecol., 6, 20–28. [CrossRef] [Google Scholar]
  • Irfanullah H. and Moss B., 2005. Effects of pH and predation by Chaoborus larvae on the plankton of a shallow and acidic forest lake. Freshw. Biol., 50, 1913–1926. [CrossRef] [Google Scholar]
  • Jeppesen E., Madsen E.A. and Jensen J.P., 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshw. Biol., 36, 115–127. [CrossRef] [Google Scholar]
  • Jeppesen E., Leavitt P., De Meester L. and Jensen J.P., 2001. Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol. Evol., 16, 191–198. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Jeppesen E., Christofferssen C., Landkildehus F. and Lauridsen T., 2001. Fish and crustacean in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia, 442, 329–337. [CrossRef] [Google Scholar]
  • Jeppesen E., Jensen J.P., Amsinck S., Landkildehus F., Lauridsen T. and Mitchell S.F., 2002. Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. J. Paleolimnol., 27, 133–143. [CrossRef] [Google Scholar]
  • Jeppesen E., Jensen J.P., Lauridsen T., Amsinck S.L., Christofferssen K., Sønderrgaard, and Mitchell S.F., 2003. Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia, 491, 321–330. [CrossRef] [Google Scholar]
  • Jeziorski A., Yan N.D., Paterson A.M., DeSellas A.M., Turner M.A., Jeffries D.S., Keller B., Weeber R.C., McNicol D.K., Palmer M.E., McIver K., Arsenau K., Ginn B.K., Cumming B.F. and Smol J.P., 2008. The widespread threat of calcium decline in fresh waters. Science, 322, 1374–1377. [CrossRef] [PubMed] [Google Scholar]
  • Kauppi P., Anttila P. and Kenttämies K. (eds.), 1990. Acidification in Finland, Springer-Verlag, Berlin. [Google Scholar]
  • Kerfoot W.C., 1974. Net accumulation rates and the history of cladoceran communities. Ecology, 55, 51–61. [CrossRef] [Google Scholar]
  • Kerfoot W.C., 1981. Long-term replacement cycles in cladoceran communities: A history of predation. Ecology, 62, 216–233. [CrossRef] [Google Scholar]
  • Kitchell J.A. and Kitchell J.F., 1980. Size-selective predation, light transmission, and oxygen-stratification: Evidence from the recent sediments of manipulated lakes. Limnol. Oceanogr., 25, 389–402. [CrossRef] [Google Scholar]
  • Kornijóv R., Vakkilainen K., Horppila J., Luokkanen E. and Kairesalo T., 2005. Impacts of a submerged plant (Elodea canadensis) on interactions between roach (Rutilus rutilus) and its invertebrate prey communities in a lake littoral zone. Freshw. Biol., 50, 262–276. [CrossRef] [Google Scholar]
  • Liljendahl-Nurminen A., 2006. Invertebrate predation and trophic cascades in a pelagic food web – the multiple roles of Chaoborus flavicans (Meigen) in a clay-turbid lake, Ph.D. Thesis, Department of Biological and Environmental Sciences, University of Helsinki. [Google Scholar]
  • Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A., 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolimnol., 18, 395–420. [CrossRef] [Google Scholar]
  • Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A., 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolimnol., 19, 443–463. [CrossRef] [Google Scholar]
  • Luoto T.P., 2009. An assessment of lentic ceratopogonids, ephemeropterans, trichopterans and oribatid mites as indicators of past environmental change in Finland. Ann. Zool. Fennici, 46, 259–270. [Google Scholar]
  • Luoto T.P. and Nevalainen L., 2009. Larval chaoborid mandibles in surface sediments of small shallow lakes in Finland: implications for paleolimnology. Hydrobiologia, 631, 185–195. [CrossRef] [Google Scholar]
  • Luoto T.P., Nevalainen L. and Sarmaja-Korjonen K., 2008. Multiproxy evidence for the ‘Little Ice Age’ from Lake Hamträsk, southern Finland. J. Paleolimnol., 40, 1097–1113. [Google Scholar]
  • Manca M., Torretta B., Comoli P., Amsinck S.L. and Jeppesen E., 2007. Major changes in trophic dynamics in large, deep sub-alpine Lake Maggiatore from 1940s to 2002: a high resolution comparative palaeo-neolimnological study. Freshw. Biol., 52, 2256–2269. [CrossRef] [Google Scholar]
  • Nyberg P., 1998. Biotic effects in planktonic crustacean communities in acidified Swedish forest lakes after liming. Water Air Soil Pollut., 101, 257–288. [CrossRef] [Google Scholar]
  • Nyberg K., Vuorenmaa J., Tammi J., Nummi P., Väänänen V.-M., Mannio J. and Rask M., 2010. Re-establishment of perch in three lakes recovering from acidification: rapid growth associated with abundant food resources. Bor. Env. Res., 15. [Google Scholar]
  • Nykänen M., Liukkonen M. and Kairesalo T., 2006. Changes of predations pressure by fish in Lake Vesijärvi by sedimentary cladoceran remains. Verh. Internat. Verein. Limnol., 29, 1321–1326. [Google Scholar]
  • Paasivirta L., 1982. Saarijärven Pyhä-Häkin makroskooppinen pohjaeläimistö. Bulletin of the University of Jyväskylä, 29, 31–39 (in Finnish). [Google Scholar]
  • Patterson W.P. and Smith G.R., 2001. Fish. In: Smol J.P., Birks H.J.B. and Last W.M. (eds.), Tracking Environmental Change Using Lake Sediments: Zoological Indicators – Developments in Paleoenvironmental Research, 4, Kluwer Academic Publishers, Dordrecht, 173–187. [Google Scholar]
  • Salo J., Walls M., Rajasilta M., Sarvala J., Räsänen M. and Salonen V.-P., 1989. Fish predation and reduction in body size in a cladoceran population: paleoecological evidence. Freshw. Biol., 21, 217–221. [CrossRef] [Google Scholar]
  • Salonen V.-P., Tuovinen N. and Valopola S., 2006. History of mine drainage impact on Lake Orijärvi algal communities, SW Finland. J. Paleolimnol., 35, 289–303. [CrossRef] [Google Scholar]
  • Sarmaja-Korjonen K., 2002. Multi-proxy data from Kaksoislammpi Lake in Finland: dramatic changes in the late Holocene cladoceran assemblages. J. Paleolimnol., 28, 287–296. [CrossRef] [Google Scholar]
  • Sarmaja-Korjonen K., 2007. Subfossil shell margins and tail spines of Daphnia in Finnish lake sediments – is Daphnia underrepresented in Cladocera analysis? Studia Quaternaria, 24, 61–64. [Google Scholar]
  • Smol J.P. and Douglas M.S.V., 2007. From controversy to consenses: making the case for recent climate change in the Arctic using lake sediments. Front. Ecol. Environ., 5, 466–474. [CrossRef] [Google Scholar]
  • Smol J.P., Wolfe A.P., Birks H.J.B., Douglas M.S.V., Jones V.J., Korhola A., Pienitz R., Rühlan K., Sorvari S., Antonisdes D., Brooks S.J., Fallu M.-A., Hughes M., Bronwyn E.K., Laing T.E., Michelutti N., Nazarova N., Nyman M., Paterson A.M., Perren P., Quinlan R., Rautio M., Saulnier-Talbot E., Siitonen S., Solovieva N. and Weckström J., 2005. Climate-driven regime shifts in the biological communities of Arctic lakes. Proc. Natl. Acad. Sci., 102, 4397–4402. [CrossRef] [Google Scholar]
  • Sweetman J.N. and Smol J.P., 2006. Reconstructing fish populations using Chaoborus (Diptera: Chaoboridae) remains – a review. Quat. Sci. Rev., 25, 2013–2023. [CrossRef] [Google Scholar]
  • Szeroczyńska K. and Sarmaja-Korjonen K., 2007. Atlas of subfossil Cladocera from Central and Northern Europe, Friends of the Lower Vistula Society, Świecie. [Google Scholar]
  • ter Braak C.J.F., 2003. Program CANOCO, Version 4.52. Biometris – quantitative methods in the life and earth sciences, Plant Research International, Wageningen University and Research Centre, The Netherlands. [Google Scholar]
  • Uutala A.J., 1990. Chaoborus (Diptera: Chaoboridae) mandibles – paleolimnological indicators of the historical status of fish populations in acid-sensitive lakes. J. Paleolimnol., 4, 139–151. [Google Scholar]
  • Vanni M.J., Layne C.D. and Arnott S.E., 1997. “Top-down” trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology, 78, 1–20. [Google Scholar]
  • Vašek M., Kubečka J., Matěna J. and Seda J., 2006. Distribution and diet of 0+ fish within a canyon-shaped European reservoir in late summer. Internat. Rev. Hydrobiol., 91, 178–194. [CrossRef] [Google Scholar]
  • Verta M., Mannio J., Iivonen P., Hirvi J.-P., Järvinen O. and Piepponen S., 1990. Trace metals in Finnish headwater lakes – effects of acidification and airborne load. In: Kauppi P., Anttila P. and Kenttämies K. (eds.), Acidification in Finland, Springer-Verlag, Berlin, 883–908. [Google Scholar]
  • Zaret T.M., 1972. Predation, invisible prey, and the nature of polymorphism in the Cladocera (class Crustacea). Limnol. Oceanogr., 17, 171–184. [CrossRef] [Google Scholar]
  • Zaret T.M. and Kerfoot W.C., 1975. Fish predation on Bosmina longirostris; body-size versus visibility selection. Ecology, 56, 232–237. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.