Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 392, 2009
Article Number 05
Number of page(s) 11
DOI https://doi.org/10.1051/kmae/2009011
Published online 28 July 2009
  • Awasthi M., 2005. Nitrate reductase activity: a solution to nitrate problems tested in free and immobilized algal cells in presence of heavy metals. Intl. J. Environ. Sci. Technol., 2, 201–206. [Google Scholar]
  • Benner R.M., Moran M.A. and Hodson R.E., 1985. Effects of pH and plant source on lignocellulose biodegradation rate in two wetland ecosystems, the Okeefenokee Swamp and a Georgia salt marsh. Limnol. Oceanogr., 30, 489–499. [CrossRef] [Google Scholar]
  • Bonin P., 1996. Anaerobic nitrate reduction to ammonium in two strains isolated from coastal marine sediment: a dissimilatory pathway. FEMS Microbiol. Ecol., 19, 27–38. [CrossRef] [Google Scholar]
  • Boulton A.J. and Boon P.I., 1991. A review of methodology used to measure leaf litter decomposition lotic environments: Time to turn over an old leaf. Aust. J. Mar. Freshwat. Res., 42, 1–43. [CrossRef] [Google Scholar]
  • Boyd S.A. and Mortland M.M., 1990. Enzyme interactions with clays and clay-organic matter complexes. In: Bollag J.M. and Stotzky G. (eds.), Soil Biochemistry, 6, Marcel Dekker, New York, USA, 1–28. [Google Scholar]
  • Burns R.G., 1986. Interactions of enzymes with soil mineral and organic colloids. In: Huang P.M. and Schnitzer M. (eds.), Interactions of soil minerals with natural organics and microbes, Special Publication, Soil Science Society of America, Inc. (17), Madison, USA, 423–427. [Google Scholar]
  • Cedergreen N. and Madsen T.V., 2003. Nitrate reductase activity in roots and shoots of aquatic macrophytes. Aquat. Bot., 76, 203–212. [CrossRef] [Google Scholar]
  • Cottingham P.D., Davis T.H. and Hart B.T., 1999. Aeration to promote nitrification in constructed wetlands. Environ. Technol., 20, 69–75. [CrossRef] [Google Scholar]
  • Cunningham H.W. and Wetzel R.G., 1989. Kinetic analysis of protein degradation by a freshwater wetland sediment community. Appl. Environ. Microbiol., 56, 1963–1976. [Google Scholar]
  • de laHaba P., Aguera E., Benitez L. and Maldonado J.M., 2001. Modulation of nitrate reductase activity in cucumber (Cucumis sativus) roots. Plant Sci., 161, 231–237. [CrossRef] [PubMed] [Google Scholar]
  • Fazzolari E., Mariotti A. and Germon J.C., 1990. Nitrate reduction to ammonia: a dissimilatory process in Enterobactor amnigenus. Can. J. Microbiol., 36, 779–785. [CrossRef] [PubMed] [Google Scholar]
  • Foreman C.M., Franchini P. and Sinsabaugh R.L., 1998. The trophic dynamics of riverine bacterioplankton: Relationships among substrate availability, ectoenzyme kinetics, and growth. Limnol. Oceanogr., 43, 1344–1352. [CrossRef] [Google Scholar]
  • Furlan S.A. and Pant H.K., 2006. General properties of enzymes. In: Pandey A., Webb C. and Larroche C. (eds.), Enzyme Technology, Springer Verlag/Asiatech Publishers, Inc., 11–35. [Google Scholar]
  • Gandy E.L. and Yoch D.C., 1998. Relationship between nitrogen-fixing sulfate reducers and fermenters in salt marsh sediments and roots of Spartina alterniflora. Appl. Environ. Microbiol., 64, 2031–2036. [Google Scholar]
  • Garcia-Novo F. and Crawford R.M.M., 1973. Soil aeration, nitrate reduction and flooding tolerance in higher plants. New Phytol., 72, 1031–1039. [CrossRef] [Google Scholar]
  • Grossart H.P., Berman T., Simon M. and Pohlmann K., 1998. Occurrence and microbial dynamics of macroscopic organic aggregates (lake snow) in Lake Kinneret, Israel, in fall. Aquat. Microb. Ecol., 14, 59–67. [CrossRef] [Google Scholar]
  • Harrison P.G. and Mann K.H., 1975. Detritus formation from eelgrass (Zostera marina L.): The relative effects of fragmentation, leaching, and decay. Limnol. Oceanogr., 20, 924–934. [CrossRef] [Google Scholar]
  • Harrison W.G., 1973. Nitrate reductase activity during a dinoflagellate bloom. Limnol. Oceanogr., 18, 457–465. [CrossRef] [Google Scholar]
  • IPCC (Intergovernmental Panel on Climate Change), 1996. Climate change 1995: The science of climate change. In: Houghton J.T., Melra Filho L.G., Collander B.A., Harris N., Kattenberg A. and Maskell K. (eds.), Cambridge University Press, Cambridge, UK. [Google Scholar]
  • Jiang Z.C. and Hull R.J., 1999. Partitioning of nitrate assimilation between shoots and roots of Kentucky bluegrass. Crop Sci., 39, 746–754. [CrossRef] [Google Scholar]
  • Juma N.G. and Tabatabai M.A., 1977. Distribution of phosphomonoesterases in soils. Soil Sci., 126, 101–108. [CrossRef] [Google Scholar]
  • Keyhani N.O. and Roseman S., 1997. Physiological aspects of chitin catabolism in marine bacteria. Biochim. Biophys. Acta (G), 1473, 108–122. [CrossRef] [Google Scholar]
  • Lee C., 1992. Controls on organic-carbon preservation – the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim. Cosmochim. Acta, 56, 3323–3335. [CrossRef] [Google Scholar]
  • Nixon S.W., Oviatt C.A., Frithsen J. and Sullivan B., 1986. Nutrients and the productivity of estuarine and coastal marine environments. J. Limnol. Soc. South Africa, 12, 43–71. [CrossRef] [Google Scholar]
  • Pant H.K. and Warman P.R., 2000. Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biol. Fertil. Soils, 30, 306–311. [CrossRef] [Google Scholar]
  • Pant H.K., Edwards A.C. and Vaughan D., 1994a. Extraction, molecular fractionation and enzyme degradation of organically associated phosphorus in soil solutions. Biol. Fertil. Soils, 17, 196–200. [CrossRef] [Google Scholar]
  • Pant H.K., Vaughan D. and Edwards A.C., 1994b. Molecular size distribution and enzymatic degradation of organic phosphorus in root exudates of spring barley. Biol. Fertil. Soils, 18, 285–290. [CrossRef] [Google Scholar]
  • Pant H.K., Reddy K.R. and Dierberg F.E., 2002. Bioavailability of organic phosphorus in a submerged aquatic vegetation-dominated treatment wetland. J. Environ. Qual., 31, 1748–1756. [CrossRef] [PubMed] [Google Scholar]
  • Perez-Mateos M. and Rad J.C., 1989. Immobilization of alkaline phosphatase by soil structural units. Biotech. Appl. Biochem., 11, 371–378. [Google Scholar]
  • Prinn R., Cunnold D., Rasmussen R., Simmonds P., Alyea F., Crawford A., Fraser P. and Rosen R., 1990. Atmospheric emission and trends of nitrous oxide deduced from 10 years of Ale-Gauge data. J. Geophys. Res. D, Atmospheres, 95, 18360–18385. [Google Scholar]
  • SAS Institute, Inc., 2002. The SAS system for Windows, version 9.1, SAS Cary, N.C. [Google Scholar]
  • Seitzinger S.P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol. Oceanogr., 33, 702–724. [CrossRef] [Google Scholar]
  • Senga Y., Mochida K., Fukumori R., Okamoto N. and Seike Y., 2006. N2O accumulation in estuarine and coastal sediments: the influence of H2S on dissimilatory nitrate reduction. Estuar. Coastal Shelf Sci., 67, 231–238. [CrossRef] [Google Scholar]
  • Simon N.S., 1988. Nitrogen cycling between sediment and the shallow-water column in the transition zone of the Potomac River and estuary. 1. Nitrate and ammonium fluxes. Estuar. Coastal Shelf Sci., 28, 483–497. [CrossRef] [Google Scholar]
  • Smith M.S. and Zimmerman K., 1981. Nitrous oxide production non-denitrifying. Soil Sci. Soc. Amer. J., 45, 865–871. [CrossRef] [Google Scholar]
  • Solomonson L.P. and Barber M.J., 1990. Assimilatory nitrate reductase: functional properties and regulation. Plant Mol. Biol., 41, 225–253. [Google Scholar]
  • Stevenson F.J., 1986. Cycles of soil – Carbon Nitrogen, Phosphorous, Sulfur, Micronutrients, Wiley-Interscience. [Google Scholar]
  • Sun M.Y., Lee C. and Aller R.C., 1993. Anoxic and oxic degradation of C-14-labeled chloropigments and a C-14-labeled diatom in Long-Island Sound sediments. Limnol. Oceanogr., 57, 147–157. [Google Scholar]
  • Touchette B.W., 2007. Seagrass-salinity interactions: Physiological mechanisms used by submersed marine angiosperms for life at sea. J. Exptl. Marine Biol. Ecol., 350, 194–215. [CrossRef] [Google Scholar]
  • Tripathi B.N., Mehta S.K. and Gaur J.P., 2004. Recovery of uptake and assimilation of nitrate in Scenedesmus sp. previously exposed to elevated levels of Cu2+ and Zn2+. J. Plant Physiol., 161, 543–549. [CrossRef] [PubMed] [Google Scholar]
  • USEPA (U.S. Environmental Protection Agency), 1993. Methods of chemical analysis of water and wastes, Environ. Monit. Support Lab, Cincinnati, USA. [Google Scholar]
  • Valiela I., 1995. Marine Ecological Processes, Springer-Verlag, New York, USA. [Google Scholar]
  • Valiela I., Costa J., Foreman K., Teal J.M., Howes B. and Aubrey D., 1990. Transport of groundwater-borne nutrients from watersheds and their effect on coastal waters. Biogeochem., 10, 177–197. [CrossRef] [Google Scholar]
  • Warman P.R. and Isnor R.A., 1990. Hydrolysis of low molecular weight soil peptides by immobilized proteases in column and batch reaction systems. Biol. Fertil. Soils, 9, 335–340. [CrossRef] [Google Scholar]
  • Xing G.X., 1998. N2O emission from cropland in China. Nutr. Cycles Agroecosys., 52, 249–254. [CrossRef] [Google Scholar]
  • Zvyagil’skaya R.A., Vartapetyan B.B. and L’vov N.P., 1996. Nitrate dissimilation in eukaryotes. Appl. Biochem. Microbiol., 32, 165–169. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.