Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
Article Number 19
Number of page(s) 10
Published online 23 April 2020
  • Berraho A, Abdelouahab H, Baibai T, et al. 2019. Short-term variation of zooplankton community in Cintra Bay (Northwest Africa). Oceanologia 61: 368–383. [CrossRef] [Google Scholar]
  • Bucklin A, Yeh HD, Questel JM, et al. 2019. Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf. ICES J Mar Sci 76: 1162–1176. [Google Scholar]
  • Carroll EL, Gallego R, Sewell MA, et al. 2019. Multi-locus DNA metabarcoding of zooplankton communities and scat reveal trophic interactions of a generalist predator. Sci Rep 9: 281. [CrossRef] [PubMed] [Google Scholar]
  • Chai ZY, He ZL, Deng YY, Yang YF, Tang YZ. 2018. Cultivation of seaweed Gracilaria lemaneiformis enhanced biodiversity in a eukaryotic plankton community as revealed via metagenomic analyses. Mol Ecol 27: 1081–1093. [CrossRef] [PubMed] [Google Scholar]
  • Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK. 2010. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4: 1053–1059. [CrossRef] [PubMed] [Google Scholar]
  • Chust G, Vogt M, Benedetti F, et al. 2017. Mare Incognitum: A glimpse into future plankton diversity and ecology research. Front Mar Sci 4: 68. [Google Scholar]
  • De Stasio BT. 1989. The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70: 1377–1389. [Google Scholar]
  • Djurhuus A, Pitz K, Sawaya NA, et al. 2018. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnol Oceanogr: Methods 16: 209–221. [CrossRef] [Google Scholar]
  • Egge ES, Johannessen TV, Andersen T, et al. 2015. Seasonal diversity and dynamics of haptophytes in the Skagerrak Norway explored by high-throughput sequencing. Mol Ecol 24: 3026–3042. [CrossRef] [PubMed] [Google Scholar]
  • Elías-Gutiérrez M, Valdez-Moreno M, Topan J, Young MR, Cohuo-Colli JA. 2018. Improved protocols to accelerate the assembly of DNA barcode reference libraries for freshwater zooplankton. Ecol Evol 8: 3002–3018. [PubMed] [Google Scholar]
  • Fontaneto D. 2019. Long-distance passive dispersal in microscopic aquatic animals. Mov Ecol 7: 10. [CrossRef] [PubMed] [Google Scholar]
  • Frisch D. 2002. Dormancy, dispersal and the survival of cyclopoid copepods (Cyclopoida, Copepoda) in a lowland floodplain. Freshwater Biol 47: 1269–1281. [CrossRef] [Google Scholar]
  • González CE, Escribano R, Bode A, Schneider W. 2018. Zooplankton taxonomic and trophic community structure across biogeochemical regions in the eastern South Pacific. Front Mar Sci 5: 498. [Google Scholar]
  • Grant RA, Griffiths HJ, Steinke D, Wadley V, Linse K. 2011. Antarctic DNA barcoding; a drop in the ocean? Polar Biol 34: 775–780. [Google Scholar]
  • Gu BY. 1982. Zooplankton in Baiyangdian Lake. Acta Agriculturae Boreali-Sinica 1: 90–98 (in Chinese with English abstract). [Google Scholar]
  • Hairston Jr NG, Kearns CM. 2002. Temporal dispersal: ecological and evolutionary aspects of zooplankton egg banks and the role of sediment mixing. Integr Comp Biol 42: 481–491. [CrossRef] [PubMed] [Google Scholar]
  • Hajibabaei M, Shokralla S, Zhou X, Singer GA, Baird DJ. 2011. Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS one 6: e17497. [CrossRef] [PubMed] [Google Scholar]
  • Hirai J, Kuriyama M, Ichikawa T, Hidaka K, Tsuda A. 2015. A metagenetic approach for revealing community structure of marine planktonic copepods. Mol Ecol Resour 15: 68–80. [Google Scholar]
  • Holm MW, Kiørboe T, Brun P, Licandro P, Almeda R, Hansen BW. 2018. Resting eggs in free living marine and estuarine copepods. J Plankton Res 40: 2–15. [Google Scholar]
  • Kobari T, Ban S. 1998. Life cycles of two limnetic cyclopoid copepods, Cyclops vicinus and Thermocyclops crassus, in two different habitats. J Plankton Res 20: 1073–1086. [Google Scholar]
  • Lee SR, Oak JH, Chung IK, Lee JA. 2010. Effective molecular examination of eukaryotic plankton species diversity in environmental seawater using environmental PCR PCR-RFLP and sequencing. J Appl Phycol 22: 699–707. [Google Scholar]
  • Lee SR, Rho T, Oak JH, Lee JA, Lee T, Chung IK. 2012. Metagenomic examination of diversity within eukaryotic plankton from the Ulleung Basin in the East Sea of Korea. J Plant Biol 55: 310–315. [Google Scholar]
  • Leray M, Knowlton N. 2017. Random sampling causes the low reproducibility of rare eukaryotic OTUs in Illumina COI metabarcoding. PeerJ 5: e3006. [CrossRef] [PubMed] [Google Scholar]
  • Lindeque PK, Parry HE, Harmer RA, Somerfield PJ, Atkinson A. 2013. Next generation sequencing reveals the hidden diversity of zooplankton assemblages. PloS one 8: e81327. [CrossRef] [PubMed] [Google Scholar]
  • Liu C, Xing X, Wang J, Zhang Y. 2010. Characteristics of rotifera community structure in the Baiyangdian Lake. Acta Ecologica Sinica 30: 4948–4959 (in Chinese with English abstract). [Google Scholar]
  • MEE (The Ministry of Ecology and Environmental Protection of the People's Republic of China). 2002. Environmental Quality Standards for Surface Water (GB3838-2002), Beijing, China. [Google Scholar]
  • Mohrbeck I, Raupach MJ, Arbizu PM, Knebelsberger T, Laakmann S. 2015. High-throughput sequencing—the key to rapid biodiversity assessment of marine metazoa? PLoS One 10: e0140342. [CrossRef] [PubMed] [Google Scholar]
  • Ning NS, Nielsen DL. 2011. Community structure and composition of microfaunal egg bank assemblages in riverine and floodplain sediments. Hydrobiologia 661: 211–221. [Google Scholar]
  • Onbé T. 1978. Sugar flotation method for sorting the resting eggs of marine cladocerans and copepods from sea-bottom sediment. Bull Japan Soc Sci Fish 44: 1411. [CrossRef] [Google Scholar]
  • Ovaskainen O, Weigel B, Potyutko O, Buyvolov Y. 2019. Long-term shifts in water quality show scale-dependent bioindicator responses across Russia–Insights from 40 year-long bioindicator monitoring program. Ecol Indic 98: 476–482. [Google Scholar]
  • Radzikowski J. 2013. Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J Plankton Res 35: 707–723. [Google Scholar]
  • Santangelo JM, Lopes PM, Nascimento MO, et al. 2015. Community structure of resting egg banks and concordance patterns between dormant and active zooplankters in tropical lakes. Hydrobiologia 758: 183–195. [Google Scholar]
  • Savin MC, Martin JL, LeGresley M, Giewat M, Rooney-Varga J. 2004. Plankton diversity in the Bay of Fundy as measured by morphological and molecular methods. Microb Ecol 48: 51–65. [Google Scholar]
  • Sun Z, Li G, Wang C, et al. 2014. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir. Sci Rep 4: 6966. [CrossRef] [PubMed] [Google Scholar]
  • Vandekerkhove J, Declerck S, Brendonck LUC, Conde-Porcuna JM, Jeppesen E, Meester LD. 2005a. Hatching of cladoceran resting eggs: temperature and photoperiod. Freshw Biol 50: 96–104. [Google Scholar]
  • Vandekerkhove J, Declerck S, Brendonck L, et al. 2005b. Uncovering hidden species: hatching diapausing eggs for the analysis of cladoceran species richness. Limnol Oceanogr: Methods 3: 399–407. [CrossRef] [Google Scholar]
  • Wang YZ, Luo Y, Zhou XS, Zhang SL, Cui WY. 2015. Zooplankton biodiversity and water ecological evaluation in Baiyangdian Lake. J Water Resour Water Eng 26: 94–100 (in Chinese with English abstract). [Google Scholar]
  • Yang J, Zhang X, Xie Y, et al. 2017. Zooplankton community profiling in a eutrophic freshwater ecosystem-lake tai basin by DNA metabarcoding. Sci Rep 7: 1773. [CrossRef] [PubMed] [Google Scholar]
  • Yi L, Liu GQ, Xiang XG, Wang JX, Zhang YJ. 2010. The biodiversity of crustacean zooplankton in Lake Baiyangdian. J Hydroecol 3: 38–43 (in Chinese with English abstract). [Google Scholar]
  • Zadereev E, Lopatina TS, Oskina N. 2019. Dormancy in Aquatic Organisms. Theory, Human Use and Modeling. Switzerland: Springer 274 p. [Google Scholar]
  • Zhan A, Hulák M, Sylvester F, et al. 2013. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol Evol 4: 558–565. [Google Scholar]
  • Zhang YW, Liu CQ, Xing XG, Wang JX, Zhang YJ. 2008. Cladocera and copepods in Baiyangdian Lake Hebei. Sichuan J Zool 27: 730–730 (in Chinese with English abstract). [Google Scholar]
  • Zhang TJ, Wang M, Peng YX, Liu LK, Liu JL. 2016. Survey of zooplankton community and evaluation of water quality in the upstream urban inland river of Baiyangdian Lake. Ecol Eng 34: 166–169. [Google Scholar]
  • Zhang H, Urrutia-Cordero P, He L, et al. 2018. Life-history traits buffer against heat wave effects on predator-prey dynamics in zooplankton. Glob Chang Biol 24: 4747–4757. [CrossRef] [PubMed] [Google Scholar]
  • Zhou Q, Lu N, Gu L, et al. 2020. Daphnia enhances relative reproductive allocation in response to toxic microcystis: Changes in the performance of parthenogenetic and sexual reproduction. Environ Pollut 259: 113890. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.