Summer microhabitat use and overlap by the invasive Round Goby (Neogobius melanostomus) and native darters in the Trent River (Ontario, Canada)

Scott M. Reid*

Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University – DNA Building, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada

Received: 27 February 2019 / Accepted: 1 May 2019

Abstract – Understanding the impacts of the invasive Round Goby (Neogobius melanostomus) is important for North American native fish conservation. One proposed mechanism for native species declines is competition for habitat. In this study, summer habitat use by Round Goby and Channel Darter (Percina copelandi) and Logperch (P. caprodes) was studied in the Trent River (Canada). Spot-electrofishing and systematic habitat sampling were used to measure habitat availability and use. Suitability for all species varied across the range of habitat conditions. At Glen Ross, habitat suitability for Channel Darter and Round Goby was highest at intermediate water depths (0.2–0.6 m), lowest at high water velocities (> 1.0 ms⁻¹) and increased with greater amounts of gravel and cobble. There were no significance habitat differences between capture locations of the two species. At Meyer's Reach, Logperch and Round Goby habitat suitability was highest at intermediate water depths (0.4–0.6 m) and where gravel and cobble were abundant. The relationship between suitability and water velocity differed between species, with moderate velocities less suitable for Round Goby. The amount of boulder and bedrock at capture locations of each species differed. Results indicate that competition for habitat with Round Goby will vary among darter species.

Keywords: habitat / invasive species / competition / fishes / river

Résumé – Utilisation et chevauchement des microhabitats d’été par le gobie à taches noires (Neogobius melanostomus) et les darters indigènes dans la rivière Trent (Ontario, Canada).

Comprendre les impacts du gobie à taches noires (Neogobius melanostomus) est important pour la conservation des poissons indigènes d’Amérique du Nord. L’un des mécanismes proposés pour le déclin des espèces indigènes est la concurrence pour l’habitat. Dans cette étude, l’utilisation de l’habitat d’été par le gobie à taches noires et deux darters indigènes, le fouille-roche gris (Percina copelandi) et la perche noire (P. caprodes) a été étudiée dans la rivière Trent (Canada). La pêche ponctuelle à l’électricité et l’échantillonnage systématique de l’habitat ont été utilisés pour mesurer la disponibilité et l’utilisation de l’habitat. La pertinence pour toutes les espèces variait selon les conditions de l’habitat. A Glen Ross, la qualité de l’habitat du fouille-roche gris et du gobie à taches noires était la plus élevée aux profondeurs intermédiaires (0,2–0,6 m), la plus faible aux vitesses élevées (> 1,0 ms⁻¹) et augmentait avec des quantités supérieures de gravier et de galets. Il n’y avait pas de différences significatives entre les habitats des deux espèces entre les lieux de capture. À Meyer’s Reach, la qualité de l’habitat de la perche noire et du gobie à taches noires était la plus élevée aux profondeurs d’eau intermédiaires (0,4–0,6 m) et là où le gravier et les galets étaient abondants. La relation entre l’adéquation et la vitesse de l’eau différait d’une espèce à l’autre, les vitesses modérées étant moins adaptées au gobie à taches noires. La quantité de blocs rocheux et de substratum rocheux aux lieux de capture de chaque espèce différait. Les résultats indiquent que la concurrence pour l’habitat du gobie à taches noires variera selon les espèces de darter.

Mots clés : habitat / espèces envahissantes / compétition / poissons / rivière

*Corresponding author: reid.scott@ontario.ca

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC-BY-ND (http://creativecommons.org/licenses/by-nd/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. If you remix, transform, or build upon the material, you may not distribute the modified material.
1 Introduction

The Round Goby (Neogobius melanostomus Pallas, 1814) is a small-bodied, benthivorous fish of Eurasian origin. The species was first detected in North America in 1990 from the St. Clair River (Jude et al., 1992); which connects Lake Huron to Lake St. Clair. Round Goby was likely introduced to North America from ballast water discharged from transatlantic ships originating from Eastern Europe. Within five years, the species had spread to all five of the Laurentian Great Lakes (Charlebois et al., 2001). Round Goby is an aggressive, rapidly colonizing, invasive fish that disrupts spawning of other benthic fishes and may eat the eggs and fry of native fishes (Kornis et al., 2012). In parts of the Great Lakes, the species has been implicated in the decline of small, native benthic fishes such as the Channel Darter (Percina copelandi Jordan, 1877), Johnny Darter (Etheostoma nigrum Rafinesque, 1820), Longnose Dace (Rhinichthys cataractae Valenciennes, 1819), and Mottled Sculpin (Cottus baikdii Girard, 1850) (Janssen and Jude, 2001; Thomas and Haas, 2001; Reid and Mandrak, 2008). While present in the Great Lakes for more than 25 years, the secondary invasion upstream of Round Goby into Ontario streams and rivers has been a more recent occurrence (Poos et al., 2010; Raby et al., 2010; Raab et al., 2018). Subsequent research in Great Lakes tributaries has identified that habitat and dietary competition between Round Goby and native darters is likely occurring (Abbett et al., 2013) and, in some watercourses, the distribution and abundance of small native fishes are negatively associated with Round Goby presence and abundance (Krackowiak and Pennuto, 2008; Abbett et al., 2013; Kornis et al., 2013; Raab et al., 2018).

In 2003, Round Goby was first collected from the Trent River downstream of the Lock 18 dam in the town of Hastings, Ontario (Canada) (Gutowsky and Fox, 2011). The Trent River forms part of the 386 km long Trent-Severn Waterway (National Historic Site of Canada) that connects Georgian Bay (Lake Huron) to Lake Ontario. The introduction is believed to be the result of anglers using baitfish collected from goby-infested waters in Lake Ontario. At the time of the discovery, Round Goby was also abundant in the Bay of Quinte (Lake Ontario), where the Trent River flows into (Taraborrelli et al., 2009). An abundance of suitable Round Goby habitat (areas with cobble and boulder-sized bed material) is present along the Trent River, and the species' downstream and upstream expansion throughout the river was rapid (Raby et al., 2010) and complete by 2010 (Reid, unpublished data). Beyond Lock 18, Round Goby has spread more than 60 km upstream along the Otonabee River to the City of Peterborough (EDDMMapS, 2019).

Seven native, small-bodied, benthic fishes are present along the Trent River: Central Stoneroller (Campostoma anomalum Rafinesque, 1820), Channel Darter, Fantail Darter (E. flabellare Rafinesque, 1819), Johnny Darter, Logperch, Longnose Dace (Rhinichthys cataractae Valenciennes, 1842), and Stonecat Madtom (Noturus flavus Rafinesque, 1818). Of these species, the Channel Darter is listed as Endangered under the Federal Species at Risk Act (SARA). Invasive species are considered a significant threat affecting Canadian freshwater fishes at risk (Dextrase and Mandrak, 2006). For imperiled darters, the risk of adverse population impacts due to Round Goby invasions has been assessed as high (DFO, 2011; COSEWIC, 2016). However, these assessments were largely based on expert opinion and, therefore require validation through field research and monitoring. One of the proposed mechanisms associated with negative Round Goby impacts is competition for habitat and shelter (Balshine et al., 2005; Abbett et al., 2013). In this study, summer microhabitat use by Round Goby and two darter species (Channel Darter and Logperch) was characterized at wadeable Trent River sites, and the magnitude of habitat overlap assessed.

2 Materials and methods

2.1 Data collection

Over the period of September 5th and 21st, 2017, daytime (9:00 am to 17:00 pm) microhabitat use was studied at two Trent River sites: Channel Darter and Round Goby habitat use at Glen Ross (44°15’47”N; 77°35’49”W) and Logperch and Round Goby habitat use at Meyer’s Reach (44°15’18”N; 77°48’43”W) (Fig. 1). Both sites are located downstream of Lock 18. Sites were selected based on suitability of habitats for sampling (i.e. electrofishing could be safely undertaken by foot) and the abundance of native darters. Channel Darter and Logperch have been collected at other Trent River sites, but the numbers of each species were considered too low for a robust study of habitat use (Reid, 2004, 2006). Wetted channel widths were between 37 and 100 m at the Meyer’s Reach site, and between 145 and 179 m at the Glen Ross site. The mean river flow rate was 64.9 m³/s. Water temperatures during sampling ranged from 15.1 to 22.8°C. Sampling occurred over seven days at Glen Ross and six days at Meyer’s Reach.

A spot-sample electrofishing technique was used to collect darters and Round Goby and characterize habitat use (Johnson, 2008; Abbett et al., 2013). Electrofishing was limited to those wadeable habitats that could be safely and effectively sampled (water depths < 1 m). The area of habitat sampled was approximately 13 000 m² at Glen Ross (within 40 m of the riverbank), and 20 000 m² at Meyer’s Reach (across the entire study area within the Laurentian Great Lakes basin (inset map).
channel width). Fishes were collected by a 2-person crew using a Smith-Root 12B backpack electrofishing unit (settings: 400 v). Darter and goby collection points were individually marked with coloured, flat metal rings (i.e. a washer). Markers were placed by hand at locations where individual fishes were visually observed to be first stunned by the electrical field. Captured fishes were measured for total length (TL) on a measuring board after sampling was complete. All fishes were released after measurement.

A systematic transect sampling approach was used to describe habitat availability (Simonson, 1993). At each site, habitat characteristics were measured at points systematically distributed across the area of habitat electro-fished. Multiple transects were placed parallel to the shoreline and evenly distributed across the river. Transects (and sampling points) were demarcated with an anchored 68 m length of rope with white floats every four metres. Habitat availability was characterized at a total of 800 points in the area sampled at Glen Ross, and at a total of 500 points in the area sampled at Meyer's Reach. With this study design, individual resource use is characterized but availability is measured at a population level (Manly et al., 2002).

Physical habitat measurements taken at each point included water depth (m), mid-water column velocity (m/s) and bed material composition (visual assessment of percent bedrock, boulder, cobble and gravel). Habitat characteristics common to other riverine fish-habitat studies (e.g. woody debris, aquatic vegetation, and fine sediment) were rare or absent, and therefore not measured. Water depth and water velocity were measured with a top-setting wading rod and a Swoffer™ water velocity meter. Water velocity was measured at 0.6 of the water depth (Bain and Stevenson, 1999). Visual-based (i.e., snorkelling) studies of stream fish microhabitat selection often include estimates of focal point elevation (vertical distance of the fish from the bottom) and focal point water velocity (velocity at the fish’s snout) (Leidy, 1992). For benthic fishes, focal point water velocities can be expected to be less than mean water column velocity (as measured at 0.6 of depth) (Stauffer et al., 1996; Welsh and Perry, 1998). Darter and Round Goby focal point elevations could not be estimated using electrofishing-based collections. For this study, mean water column velocity is assumed to be an index of focal point velocity. Percent composition of bed material was visual assessed using the following modified Wentworth particle size categories: bedrock, boulder (> 256 mm diameter), cobble (65–256 mm), and gravel (2–64 mm).

2.2 Data analysis

For each species, habitat suitability curves were developed individually for (i) water depth, (ii) water velocity, and (iii) combined percentage of gravel and cobble bed material. Curves were generated following the approach described by Hightower et al. (2012). The probability of using habitat category i was modeled as:

$$P_i = \frac{w_i a_i}{\sum_{j=1}^{n} (w_j a_j)}$$

where a_i is the proportion of habitat available in category i, and w_i is the unscaled relative probability of using habitat i based on the frequency of each species in habitat i if all habitats were equally available. Estimates of w_i would be similar in magnitude if all habitats were used in proportion to their availability. As per Hightower et al. (2012), w_i values were rescaled to a maximum of 1 for all habitat variables.

Principal component analysis (PCA) was used to visualize, in multivariate space, the similarity of habitat use by native darters and Round Goby, with reference to available habitat. As variables were measured with different units, variables were standardized by subtracting the mean and dividing by the standard deviation (Legendre and Legendre, 1998). Principal components (PC) with eigenvalues greater than 1 and loadings greater than [0.6] were retained. PC scores were subsequently used as dependent variables in Multivariate Analysis of Variance (MANOVA) to test for habitat differences between darters and Round Goby, and between collection points and available habitat. Hotelling's T^2 was used to test for pairwise differences, and p-values were adjusted using a sequential Bonferroni correction. Statistical analysis was completed using PAST version 1.94 (Hammer et al., 2001).

3 Results

One hundred-nineteen Channel Darter, 421 Logperch and 360 Round Goby were captured during electrofishing. The median (range, standard deviation) total length of Channel Darter was 61.5 (52-70, 3.6) mm, of Logperch was 106 (61-140, 12.8) mm, and of Round Goby was 83 (29-168) mm. Round Goby collected from Glen Ross (median: 81 mm; range: 29–168; standard deviation: 21.3) and Meyer's Reach (median: 86 mm; range: 40–134; standard deviation: 24.9) were of similar size. Other species commonly encountered during electrofishing include Longnose Dace, Pumpkinseed (Lepomis gibbosus Linnaeus, 1758), Rock Bass (Ambloplites rupestris Rafinesque, 1817), and Smallmouth Bass (Micropterus dolomieu Lacépède, 1802). Glen Ross flow conditions were characterized by moderate water depths (0.4–0.8 m) and water velocities typically below 0.6 m s$^{-1}$. Along Meyer's Reach, water depths were generally shallow (< 0.4 m) with water velocities less than 0.3 m s$^{-1}$. The Glen Ross riverbed was a relatively even mix of gravel, cobble, boulder and bedrock. Riverbed material along Meyer's Reach was dominated by cobble, boulder and bedrock; with only a small amount of gravel present (Tab. 1).

3.1 Glen Ross

Channel Darter and Round Goby captures were generally associated with moderate water depths (0.4–0.8 m) and slow to moderate water velocities (0.1–0.5 m s$^{-1}$), and with gravel and cobble substrates (Tab. 1; Figs. 2 and 3; Figs. S1 and S2). Channel Darter habitat suitability was greatest at water depths between 0.2 and 0.4 m, and water velocities between 0.2 and 0.4 m s$^{-1}$, and 0.8 and 1.0 m s$^{-1}$. Suitability declined substantially at depths greater than 0.6 m and velocities > 0.8 m s$^{-1}$ (Figs. 2 and 3). Round Goby habitat suitability was greatest at water depths between 0.2 and 0.6 m and water velocities less
than 0.2 ms$^{-1}$. Suitability declined substantially at depths greater than 0.6 m and velocities >0.8 ms$^{-1}$. For both species, habitat suitability improved as the amount of gravel and cobble increased (Fig. 4).

Table 1. Comparison of mean (standard deviation) habitat measurements at Channel Darter, Logperch and Round Goby collection spots. Available and used microhabitat data were measured at two Trent River locations (September, 2017).

<table>
<thead>
<tr>
<th></th>
<th>Water depth (m)</th>
<th>Water velocity (ms$^{-1}$)</th>
<th>Bedrock (%)</th>
<th>Boulder (%)</th>
<th>Cobble (%)</th>
<th>Gravel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glen Ross</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available ($n=800$)</td>
<td>0.45 (0.18)</td>
<td>0.35 (0.26)</td>
<td>22.4 (40.0)</td>
<td>21.6 (25.0)</td>
<td>34.1 (25.5)</td>
<td>22.0 (19.4)</td>
</tr>
<tr>
<td>Channel Darter ($n=119$)</td>
<td>0.42 (0.18)</td>
<td>0.32 (0.22)</td>
<td>2.6 (12.9)</td>
<td>22.4 (20.9)</td>
<td>47.1 (18.0)</td>
<td>27.8 (15.3)</td>
</tr>
<tr>
<td>Round Goby ($n=165$)</td>
<td>0.38 (0.14)</td>
<td>0.31 (0.23)</td>
<td>7.7 (22.0)</td>
<td>21.1 (20.5)</td>
<td>44.2 (22.3)</td>
<td>27.0 (17.8)</td>
</tr>
<tr>
<td>Meyers Reach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available ($n=500$)</td>
<td>0.27 (0.13)</td>
<td>0.18 (0.13)</td>
<td>38.6 (45.0)</td>
<td>27.1 (25.4)</td>
<td>25.6 (25.4)</td>
<td>8.8 (10.6)</td>
</tr>
<tr>
<td>Logperch ($n=421$)</td>
<td>0.31 (0.09)</td>
<td>0.19 (0.13)</td>
<td>11.1 (22.5)</td>
<td>38.5 (20.5)</td>
<td>36.4 (21.3)</td>
<td>14.0 (9.7)</td>
</tr>
<tr>
<td>Round Goby ($n=195$)</td>
<td>0.31 (0.08)</td>
<td>0.16 (0.10)</td>
<td>23.0 (30.6)</td>
<td>21.0 (17.7)</td>
<td>39.7 (27.2)</td>
<td>16.3 (11.6)</td>
</tr>
</tbody>
</table>

Fig. 2. Estimated Channel Darter (— — —) and Round Goby (solid line) habitat suitability for water depth (upper panel) and water velocity (lower panel) at Glen Ross, based on a resource selection function fitted to habitat use and availability data (Figs. S1 and S2). Suitability is scaled from 0 (unsuitable habitat) to 1 (highly suitable).

Fig. 3. Estimated Logperch (—) and Round Goby (solid line) habitat suitability for water velocity and water depth at Meyer’s Reach, based on a resource selection function fitted to habitat use and availability data (Figs. S1 and S2). Suitability is scaled from 0 (unsuitable habitat) to 1 (highly suitable).
available habitat, Channel Darter habitat use, and Round Goby habitat use (MANOVA, Wilk’s Lambda: 0.94, $p < 0.0001$). However, there was no significant difference between Channel Darter and Round Goby PC scores (pairwise comparison Hotelling’s T^2: $p > 0.45$). For both species, habitat use PCA scores were significantly different than available habitat (Hotelling’s T^2: $p < 0.0001$). Differences among PC 1 scores indicate Channel Darter and Round Goby were both collected from locations with more gravel and cobble, and less bedrock than available across the Glen Ross site (Tab. 1; Fig. 5).

3.2 Meyer’s Reach

Logperch and Round Goby captures were generally associated with shallow to moderate water depths (0.2–0.4 m), and slow to moderate water velocities (0.1–0.3 ms$^{-1}$). At Logperch capture points, there was less bedrock and more boulder than where Round Goby were captured (Tab. 1; Figs. 3 and 4; Figs. S1 and S2). For both Logperch and Round Goby, habitat suitability at Meyer’s Reach is predicted be greatest at water depths between 0.2 and 0.4 m and at locations dominated by gravel and cobble bed material (Figs. 3 and 4). Suitability declined substantially for Round Goby when water velocity was greater than 0.4 ms$^{-1}$, and for Logperch when water velocity was greater than 0.8 ms$^{-1}$ (Figs. 3 and 4).

The first three principal components explained 75.1% of the total variance among habitat use and availability measurements along Meyer’s Reach. The first axis (PC1) reflected differences in the amount of gravel, cobble and bedrock. Differences in the amount of boulder (PC2) and water velocity (PC3) were represented by the other 2 axes (Fig. 6). There were significant differences among PC scores associated with available habitat and habitat used by Logperch, and habitat used by Round Goby (MANOVA, Wilk’s Lambda: 0.87, $p < 0.0001$). There was a significant difference between Logperch and Round Goby habitat use PC scores (Hotelling’s T^2: $p < 0.0001$). Differences between PC scores from the first 2 axes indicate that Logperch and Round Goby were collected from locations with differing amounts of boulder and bedrock (Tab. 1; Fig. 6). For both species, habitat use PCA scores were significantly different than available habitat (pairwise comparison Hotelling’s T^2: $p < 0.0001$). Compared to available habitat, both species were collected from spots with less bedrock, and more gravel and cobble.

4 Discussion

Past observational and experimental studies have shown that Round Goby affects local habitat use by native small-bodied benthic fishes such as Mottled Sculpin (Dubs and Corkum, 1996; Janssen and Jude, 2001) and Logperch (Balshine et al., 2005; Leino and Mensinger, 2017).
shallow riffles. Reaches are dominated by deep run habitat and impounded water. Along the Trent River, such wadeable habitats are uncommon. Native darters and the invasive Round Goby was only studied in the summer from deeper habitats along the Trent River (Gutowsky et al., 2011). Therefore, the breadth of microhabitats utilized by Round Goby is expected to be much greater than measured.

There were significant differences between Logperch and Round Goby habitat use; reflective of water velocities and riverbed material selected. As observed in nearby rivers (Reid et al., 2005), Logperch occupied habitats dominated by cobbles and boulders. In experimental studies, Round Goby has been shown to outcompete Logperch for shelter (Balshine et al., 2005) and food resources in rocky habitats (Leino and Mensinger, 2017). While Round Goby has been observed to be more aggressive than native, small-bodied benthic fishes (Dubs and Corkum, 1996), the outcomes of competitions for space and shelter are also size-dependent (Balshine et al., 2005; Groen et al., 2012). Trent River Logperch were on average 20 mm longer than Round Goby, and therefore, habitat use may be unaffected by the presence of Round Goby.

Habitats occupied by Channel Darter and Logperch differed; along with the degree of habitat overlap with Round Goby. Past studies have found differences between the habitats occupied by the two darter species (Stauffer et al., 1996; Reid et al., 2005). While both species appear to select particular microhabitats, differences among studies are not consistent. In the Trent River, the greater association of Channel Darter with faster and deeper habitats, and more gravels and cobbles, may simply reflect site-level differences in available habitat.

Past research undertaken along the Trent-Severn Waterway on the invasive Round Goby has provided insight into detection and monitoring methods (Gutowsky et al., 2011), rates of expansion (Brownscombe et al., 2012), diet composition (Raby et al., 2010), and variation in behavioural and demographic characteristics along the invasion front (Gutowsky and Fox, 2011; Groen et al., 2012). The length distributions of Round Gobies collected during this study were similar to that measured during the expansion phase of the Trent River invasion, nine years earlier (Gutowsky and Fox 2011). Also, the strong affinity for gravel, cobble and boulder material by Round Goby at Glen Ross and Meyer's Reach was consistent with observations by Brownscombe and Fox (2012) at other Trent-Severn Waterway sites. Round Goby diet in the Trent River includes a variety of invertebrates (zooplankton, amphipods and benthic macroinvertebrates) (Raby et al., 2010; Paton et al., 2019) that are also important prey for Channel Darter and Logperch. Therefore, competition between Round Goby and native darters is potentially occurring for both physical habitat and food resources along the Trent River. While the stomach contents of Logperch and Round Goby collected from the Trent-Severn Waterway have been compared (Paton et al., 2019), diet overlap with Channel Darter has not been studied. Future research on Channel Darter diet and trophic overlap with Round Goby is necessary to provide stronger evidence of resource competition.

Globally, most Round Goby impact studies have been undertaken within a short-time frame (<5 years) after detection (Hirsch et al., 2016). Observations from this study provide a longer-term (>10 years later) perspective on the potential for resource competition with native, small-bodied benthic fishes along the Trent River. In other aquatic habitats, evidence of resource competition has been reported along with
declines in native fish distribution and abundance (Burkett and Jude, 2015). Documentation of population-level impacts to species such as the Channel Darter that utilize the same microhabitats as Round Goby will, however, require additional field study along the Trent River (e.g. Raab et al., 2018).

Supplementary Material

Fig. S1. Frequency distributions (percentage of all measurements) for water depth measurements at two Trent River study sites (upper panel: Glen Ross; lower panel: Meyer’s Reach), September 2017. Legend abbreviations: Avail – available habitat; CH – Channel Darter; LG – Logperch; RG – Round Goby.

Fig. S2. Frequency distributions (percentage of all measurements) for water velocity measurements at two Trent River study sites (upper panel: Glen Ross; lower panel: Meyer’s Reach), September 2017. Legend abbreviations: Avail – available habitat; CH – Channel Darter; LG – Logperch; RG – Round Goby.

The Supplementary Material is available at https://www.kmae-journal.org/10.1051/kmae/2019021/olm.

Acknowledgements. Research was supported by Fisheries and Oceans Canada and Ontario Ministry of Natural Resources and Forestry species at risk program funds. I would like to acknowledge the efforts of Sarah Stewart, Matt Sweeting, and Alex Verkuyl who assisted with sampling and data entry. An earlier version of the manuscript was improved by comments from three reviewers.

References

Leino JR, Mensinger AF. 2017. Interspecific competition between the Round Goby, Neogobius melanostomus, and the Logperch, Percina
caprodes, in the Duluth-Superior harbour. Ecol Freshwat Fish 26: 34–41.

Cite this article as: Reid SM. 2019. Summer microhabitat use and overlap by the invasive Round Goby (Neogobius melanostomus) and native darters in the Trent River (Ontario, Canada). Knowl. Manag. Aquat. Ecosyst., 420, 23.