Crangonyx pseudogracilis Bousfield, 1958 – the first alien amphipod crustacean in freshwaters of Iberian Peninsula (Portugal)

M. Grabowski¹*, M. Rachalewski¹,², F. Banha², P. Anastacio²

Received January 12, 2012
Revised February 28, 2012
Accepted March 6, 2012

ABSTRACT

Crangonyx pseudogracilis, a North American crangonyctid amphipod, was found in a stream of Santarém District (Portugal) in September 2011. It is the first record of this species from the Iberian Peninsula. Exact time, mode of introduction and distribution of C. pseudogracilis in the area remain unknown. So far its occurrence was reported only from several countries in north-western Europe. A short overview upon the species general distribution, ecology and invasive potential is provided.

The genus Crangonyx groups nearly 50 species, of which 42 are native and primarily endemic to North America (Zhang and Holsinger, 2003; Väinölä et al., 2008). Crangonyx pseudogracilis Bousfield, 1958 has the widest geographic distribution among all congeneric species. According to Zhang and Holsinger (2003) it occurs west of the Appalachian Mountains, from the Great Lakes in the north to Louisiana and Texas in the south. Some isolated populations, very similar in morphological terms, were found also in Arizona and Nevada yet their taxonomic status remains obscure. In the native area, C. pseudogracilis inhabits a wide range of surface freshwater habitats, including among others: streams, rivers, swamps, ponds and

¹ Department of Invertebrate Zoology & Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
² IMAR – Centro de Mar e Ambiente and Departamento de Paisagem, Ambiente e Ordenamento, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
* Corresponding author: michalg@biol.uni.lodz.pl
During the 1930s, Crawford (1937) and Tattersal (1937) found the species in England, in the vicinity of London, and identified it as *Eucrangonyx gracilis* (Smith, 1871). Until the 1990s, *C. pseudogracilis* has spread widely through the navigable canals in the British Islands, occurring in numerous localities in England, Wales and north-eastern Scotland (Gledhill *et al.*, 1993). In the 1970s it was found near Dublin in Ireland (Holmes, 1975), where it has also spread, reaching Northern Ireland in the mid-1980s (Dick *et al.*, 1999). In the late 1970s and in the 1980s it was found in the Netherlands and in Belgium (Pinkster *et al.*, 1980; Martin, 1986). Later on, it has spread throughout north-western Europe, occurring now from the Mosel and Rhine to the German Danube; on the Scandinavian Peninsula it reaches east to Finland (Silfverberg, 1999; Tittizer *et al.*, 2000; Bernerth and Stein, 2003; Berthold and Kaiser, 2004). Until now, the species has not been reported from Central and Eastern Europe nor from the Mediterranean region including the Iberian Peninsula. So far, nothing is known about the pathways and vectors of the species spread and introductions. Zhang and Holsinger (2003) hypothesised that it may have been introduced to Europe with ballast waters and that its spread may be related to the presence of artificial canals and transportation of live fish and/or aquatic plants.

In September and October 2011, an abundant population of *C. pseudogracilis* (Figure 1) was unexpectedly found by the junior authors in a small stream near the town of Granho, Santarém district, in Portugal (39.096622°, –8.641719°). The location of the sampling site is shown on Figure 2A. The sample was taken from an area of approximately 2 m², with a benthic hand-net (equilateral triangle, 30 cm wide, with a 900 µm mesh size), from a slowly flowing stream with muddy bottom and very rich aquatic vegetation (Figure 2B). The vegetation cover of the

![Figure 1](image_url)

Figure 1
Crangonyx pseudogracilis found in Santarém District, Portugal. A – habitus, B – telson, C – uropods III (Photographs by M. Grabowski).
riverbank consisted of *Cynodon dactylon* and *Salix atrocinerea* and in the shallow water we found *Cyperus longus* and *C. eragrostis* and *Scirpus lacustris*. Basic physicochemical parameters of the water were measured, including temperature (13.1 °C), conductivity (245 µS·cm⁻¹), pH (6.92) and saturation with oxygen (10.26 mg·L⁻¹, 96.4%). Among the 340 individuals gathered, the majority was found among roots of *Scirpus lacustris*. The animals were fixed in 98% ethanol and identified to the species level, based on the features provided by Zhang and Hoslinger (2003). *Crangonyx pseudogracilis* was the only amphipod found at the site. The reference samples are stored in the institutional collections kept by the authors. The conditions in which *C. pseudogracilis* has been found in Portugal, fit within the wide range of its habitats in Europe, that includes almost all kind of inland waterbodies, clean and polluted, fresh- or even brackish waters (Martin and Holdich, 1986; Pinkster et al., 1992). The biology of this alien crangonyctid in Europe was studied by Hynes (1955), Sutcliffe and Carrick (1981), Pinkster and Platvoet (1983) and Dick et al. (1998, 1999). According to these authors, *C. pseudogracilis* is reproducing throughout the year with peaks of breeding activity in spring and late summer. In opposition to gammarids, males of *C. pseudogracilis* are much smaller.

Figure 2
First record of *Crangonyx pseudogracilis* found in the Iberian Peninsula. A – location of the sampling site, B – sampling site (Photograph by M. Rachalewski).
than females (respectively 3–4 mm and up to 11 mm). Crangonyctids do not form precopulatory pairs. After copulation, eggs are laid into the broodpouch. The average brood size is 33 eggs, with a maximum of 108. Depending on temperature, the young hatch after 7 to 65 days. They reach maturity after two-three months and may live up to two years. During that time, the female is able to produce up to 8 broods. Kirkpatrick et al. (2006) suggested the use of this species as an “early warning indicator” in the Multispecies Freshwater Biomonitor (MFB) of water quality. Slothouber Galbreath et al. (2004, 2010) reported that C. pseudogracilis was introduced to Europe with its microsporidian parasite. The pathogen is vertically transmitted and has a feminizing effect on infected animals causing overproduction of female offspring. According to the above mentioned authors such manipulation may in fact promote population growth.

MacNeil et al. (1999) showed that C. pseudogracilis suffers heavy intraguild predation from European Gammarus species, due to its relatively small body size. However, mean brood size and breeding potential is higher in C. pseudogracilis than in several native European freshwater gammarids (Hynes, 1955; Pinkster et al., 1992; Guerao, 2003; Grabowski et al. 2007), which may compensate for the predation pressure. Concluding, the species has large invasive potential, particularly in warm and relatively polluted waters of the Iberian Peninsula. The epigean amphipod freshwater fauna of the Iberian Peninsula has not been thoroughly studied, yet its high level of endemism is already known (Pinkster, 1993; Väinölä et al., 2008). Being the first amphipod invader in inland waters of the Iberian Peninsula, C. pseudogracilis may pose a serious threat to local species, such as Echinogammarus lusitanus (Schellenberg, 1943) or E. meridionalis Pinkster, 1973 – endemics occurring in Portuguese lowland streams (Pinkster, 1993). Thus, further studies upon the species dispersal ability, ecology, interaction with local amphipods and other freshwater macroinvertebrates are highly required.

REFERENCES

