Supplementary materials

Nitrogen loading increases both algal and non-algal turbidity in subtropical shallow mesocosms: implication for nutrient management

Hu He 1, 2, Lei Zhang 1, Xiaoyu Ning 1, Zhigang Mao 2*, Erik Jeppesen 3, 4, 5, 6, 7

1 School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, China
2 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
3 Department of Ecoscience and WATEC, Aarhus University, 8000, Aarhus, Denmark
4 Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, China
5 Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara 06800, Turkey
6 Institute of Marine Sciences, Middle East Technical University, 33731 Erdemli-Mersin, Turkey
7 Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China

* Corresponding author: Dr. Zhigang Mao

E-mail: zgmao@niglas.ac.cn
Postal address: 73 East Beijing Road, Nanjing, 210008, China
Fig. S1 Temporal dynamics of (a) inorganic suspended solids (ISS) and (b) light attenuation coefficient (Kd). The days were ranged from Day 0 – Day 70. (c) Significant positive relationship between ISS concentration and non-algal turbidity. We calculated the non-algal turbidity using the empirical formula in Lake Taihu (Turb\textsubscript{NonAlgal} = 1/ZSD−0.011×Chl. a−0.18) (Ma et al. 2021), Where ZSD is the Secchi depth which were calculated by the formula: ZSD = 1.852/(Kd − 0.096) (Zhang et al., 2004)