Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Article Number 25
Number of page(s) 11
Published online 03 May 2016
  • Ågren G.I., 2004. The C:N:P stoichiometry of autotrophs – theory and observations. Ecol. Lett., 7, 185–191. [CrossRef]
  • Ågren G.I., 2008. Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. Syst., 39, 153–170. [CrossRef]
  • Ågren G.I. and Weih M., 2012. Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytol., 194, 944–952. [CrossRef] [PubMed]
  • Berdalet E., Latasa M. and Estrada M., 1994. Effects of nitrogen and phosphorus starvation on nucleic acid and protein content of Heterocapsa sp. J. Plankton Res., 16, 303–316. [CrossRef]
  • Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. [CrossRef] [PubMed]
  • Bremner J.M., 1996. Nitrogen-total. In: Sparks D.L. et al. (eds.), Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, 1085–1123.
  • Cernusak L.A., Winter K. and Turner B.L., 2010. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls. New Phytol., 185, 770–779. [CrossRef] [PubMed]
  • Elser J.J., Acharya K., Kyle M., Cotner J., Makino W., Markow T., Watts T., Hobbie S., Fagan W., Schade J., Hood J. and Sterner R.W., 2003. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett., 6, 936–943. [CrossRef]
  • Elser J.J., Fagan W.F., Kerkhoff A.J., Swenson N.G. and Enquist B.J., 2010. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol., 186, 593–608. [CrossRef] [PubMed]
  • Flynn K.J., Raven J.A., Rees T.A.V., Finkel Z., Quigg A. and Beardall J., 2010. Is the growth rate hypothesis applicable to microalgae? J. Phycol., 46, 1–12. [CrossRef]
  • Frost P.C., Evans-White M.A., Finkel Z.V., Jensen T.C. and Matzek V., 2005. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109, 18–28. [CrossRef]
  • Giordano M., Palmucci M. and Raven J.A., 2015. Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae. Plant Cell Environ., 38, 2313–2317. [CrossRef] [PubMed]
  • Güsewell S., 2004. N: P ratios in terrestrial plants: variation and functional significance. New Phytol., 164, 243–266. [CrossRef]
  • Hessen D.O., Ågren G.I., Anderson T.R., Elser J.J. and de Ruiter P.C., 2004. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85, 1179–1192. [CrossRef]
  • Hessen D.O., Jensen T.C., Kyle M. and Elser J.J., 2007. RNA responses to N- and P-limitation: reciprocal regulation of stoichiometry and growth rate in Brachionus. Funct. Ecol., 21, 956–962.
  • Karimi R. and Folt C.L., 2006. Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates. Ecol. Lett., 9, 1273–1283. [CrossRef]
  • Karpinets T., Greenwood D., Sams C. and Ammons J., 2006. RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis. BMC Biol., 4, 30. [CrossRef] [PubMed]
  • Klausmeier C.A., Litchman E., Daufresne T. and Levin S.A., 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174. [CrossRef] [PubMed]
  • Kuo S., 1996. Phosphorus. In: Sparks D.L. et al., (eds.), Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, 869–920.
  • Lukas M., Sperfeld E. and Wacker A., 2011. Growth Rate Hypothesis does not apply across colimiting conditions: cholesterol limitation affects phosphorus homoeostasis of an aquatic herbivore. Funct. Ecol., 25, 1206–1214. [CrossRef]
  • Makino W., Cotner J., Sterner R. and Elser J., 2003. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct. Ecol., 17, 121–130. [CrossRef]
  • Matzek V. and Vitousek P.M., 2009. N:P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol. Lett., 12, 765–771. [CrossRef]
  • Meng W., 2009. System engineering for water pollution control at the watershed level in China. Front. Environ. Sci. Engin. China, 3, 443–452. [CrossRef]
  • Meunier C.L., Malzahn A.M. and Boersma M., 2014. A new approach to homeostatic regulation: towards a unified view of physiological and ecological concepts. PLoS ONE 9, e107737. [CrossRef] [PubMed]
  • Moss B., Jeppesen E., Søndergaard M., Lauridsen T. and Liu Z., 2012. Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia, 710, 3–21. [CrossRef]
  • Niklas K.J., 2006. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Ann. Bot., 97, 155–163. [CrossRef] [PubMed]
  • Peng Y., Niklas K.J. and Sun S., 2011. The relationship between relative growth rate and whole-plant C : N : P stoichiometry in plant seedlings grown under nutrient-enriched conditions. J. Plant Ecol., 4, 147–156. [CrossRef]
  • Persson J., Fink P., Goto A., Hood J.M., Jonas J. and Kato S., 2010. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741–751. [CrossRef]
  • Poorter H. and Bergkotte M., 1992. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15, 221–229. [CrossRef]
  • Reef R., Ball M.C., Feller I.C. and Lovelock C.E., 2010. Relationships among RNA:DNA ratio, growth and elemental stoichiometry in mangrove trees. Funct. Ecol., 24, 1064–1072. [CrossRef]
  • Sistla S.A. and Schimel J.P., 2012. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol., 196, 68–78. [CrossRef] [PubMed]
  • Sterner R.W. and Elser J.J., 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, New Jersey.
  • Villar-Argaiz M., Medina-Sánchez J.M. and Carrillo P., 2002. Linking life history strategies and ontogeny in crustacean zooplankton: implications for homeostasis. Ecology 83, 1899–1914. [CrossRef]
  • Vrede T., Persson J. and Aronsen G., 2002. The influence of food quality (P:C ratio) on RNA: DNA ratio and somatic growth rate of Daphnia. Limnol. Oceanogr., 47, 487–494.
  • Wang Y., Gao G., Qin B. and Wang X. 2012. Ecophysiological and anatomical responses of Vallisneria natans to nitrogen and phosphorus enrichment. Knowl. Manag. Aquat. Ecosyst., 405, 05. [CrossRef] [EDP Sciences]
  • Weider L.J., Glenn K.L., Kyle M. and Elser J.J., 2004. Associations among ribosomal (r) DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus Daphnia. Limnol. Oceanogr., 49, 1417–1423. [CrossRef]
  • Xing W., Wu H., Shi Q., Hao B., Liu H., Wang Z. and Liu G., 2015. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China). Sci. Rep., 5, 10186. [CrossRef] [PubMed]
  • Yu Q., Chen Q., Elser J.J., He N., Wu H., Zhang G., Wu J., Bai Y. and Han X., 2010. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecol. Lett., 13, 1390–1399. [CrossRef]
  • Yu Q., Elser J.J., He N., Wu H., Chen Q., Zhang G. and Han X., 2011. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1–10. [CrossRef] [PubMed]
  • Yu Q., Wu H., He N., Lü X., Wang Z., Elser J.J., Wu J. and Han X., 2012. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass. PLoS ONE, 7, e32162. [CrossRef] [PubMed]
  • Yu Q., Wang H.Z., Li Y., Shao J.C., Liang X.M., Jeppesen E. and Wang H.J., 2015. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations. Water Res., 83, 385–395. [CrossRef]