Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Article Number 30
Number of page(s) 9
Published online 05 July 2016
  • Abrahim G.M.S. and Parker P.J., 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediment from Tamaki Estuary Auckland, New Zealand. Environ. Monitor Assess., 136, 227–238. [CrossRef]
  • Bajkić S., Naranèić T., Ðokić L., Ðorđević D., Nikodinović-Runić J., Morić I. and Vasiljević B., 2013. Microbial diversity and isolation of multiple metal-tolerant bacteria from surface and underground pits within the copper mining and smelting complex Bor. Arch. Biol. Sci., Belgrade, 65, 375–386. [CrossRef]
  • Baudo R., Foudoulakis M., Arapis G., Perdaen K., Lanneau W., Paxinou A.C.M., Kouvdou S. and Persoone G., 2015. History and sensitivity comparison of the Spirodela polyrhiza microbiotest and Lemna toxicity tests. Knowl. Manag. Aquat. Ecosyst., 416, 23, DOI: 10.1051/kmae/2015019. [CrossRef] [EDP Sciences]
  • Bouskill N.J., Barker-Finkel J., Galloway T.S., Handy R.D. and Ford T.E., 2010. Temporal bacterial diversity associated with metal-contaminated river sediments. Ecotoxicology, 19, 317–328. [CrossRef]
  • Boyd R.S. and Rajakaruna N., 2013. Heavy Metal Tolerance, Ecology – Oxford Bibliographies, 1–24.
  • Brankov J., Milijašević D. and Milanovć A., 2012. The assessment of the surface water quality using the water pollution index: a case study of the Timok river (the Danube Rivr Basin), Serbia. Arch. Environ. Protect., 38, 49–61. [CrossRef]
  • Bugarin M., Jonović R., Avramović L., Ljubojev M., Stevanović Z. and Marinković V., 2013. Integrated Treatment of Waste Water and Solid Mining Waste. Journal of Technics Technologies Education Management, 8, 423–429.
  • Cappucino J.G. and Sherman N., 2008. Nitrification. In Microbiology a Laboratory Manual. International student edition, 7th edition. Addison Wesely Publication, 343–344.
  • Chibuike G.U. and Obiora S.C., 2014. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci., ID 752708, 12 p., DOI: 10.1155/2014/752708
  • Choudhary S., Ekramul I., Kazy S.K. and Sar P., 2012. Uranium and other heavy metal resistance and accumulation in bacteria isolated from uranium mine wastes. J. Environ. Sci. Health Part A, 47, 622–637. [CrossRef]
  • Clarke K.R., and Gorley R.N., 2001. Primer v5: User manual/Tutorial. Primer-E, Plymouth.
  • Domagala Z. and Domka F., 1992. Kinetic model of dissimilatory sulfate reduction. Environ. Prot. Eng., 18, 98.
  • Drăgan-Bularda M., 2000. Microbiologie generala. Lucrari practice. Babež-Bolyai University, Cluj-Napoca, 292 p.
  • Dragićević S., Novković I., Carević I., Ţivković N. and Tošić R., 2011. Geohazard assessment in the Eastern Serbia. Studii si cercetǎri de geografie si protecþia mediului, 10, 10–19.
  • Dunca S., Ailiesei O., Nimitan E. and Stefan M., 2007. Microbiologie aplicata. Demiurg, Iasi, 293 p.
  • Giannopoulou I. and Panias D., 2008. Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy, 90, 137–146. [CrossRef]
  • Gillan D.C., Baeyens W., Bechara R., Billon G., Denis K., Grosjean P., Leermakers M., Lesven L., Pede A., Sabbe K. and Gao Y., 2012. Links between bacterial communities in marine sediments and trace metal geochemistry as measured by in situ DET/DGT approaches. Mar. Pollut. Bull., 64, 353–362. [CrossRef]
  • Gogartin J.P., Doolittle W.F. and Lawrence J.G., 2002. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol., 19, 2226–2238. [CrossRef] [PubMed]
  • Hammer Ø., Harper D.A.T. and Ryan P.D., 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron., 4, 4 p.
  • Jin S., Drever JI. and Colberg P.J., 2007. Effects of copper on sulfate reduction in bacterial consortia enriched from metal-contaminated and uncontaminated sediments. Environ. Toxicol. Chem., 26, 225–30. [CrossRef] [PubMed]
  • Kostanjšek R., Lapanje A., Drobne D., Perović S., Perović A., Zidar P., Strus J., Hollert H. and Karaman G., 2005. Bacterial community structure analyses to asess pollution of water and sediments in the Lake Shkodra/Skadar, Balkan Peninsula. Environ. Sci. Pollut. Res., 12, 361–368. [CrossRef]
  • Kovačević R., Jovašević-Stojanović M., Tasić V., Milošević N., Petrović N., Stanković S. and Matić-Besarabić S., 2010. Preliminary analysis of levels of arsenic and other metalic elements in PM10 sampled near Copper Smelter Bor (Serbia). Chem. Ind. Chem. Eng. Q., 16, 269–279. [CrossRef]
  • Lafabrie C., Hlaili A.S., Leboulanger C., Tarhouni I., Othman H.B., Mzoughi N., Chouba L. and Pringault O., 2013. Contaminated sediment resuspension induces shifts in phytoplankton structure and function in a eutrophic Mediterranean lagoon. Knowl. Manag. Aquat. Ecosyst., 410, 05, DOI: 10.1051/kmae/2013060. [CrossRef] [EDP Sciences]
  • Li X., Zhu Y., Cavagnaro T.R., Chen M., et al., 2009. Do ammonia-oxidizing archaea respond to soil Cu contamination similarly asammonia-oxidizing bacteria? Plant and Soil, 324, 209–217. [CrossRef]
  • Liu Y., Zheng Y., Shen J., Zhang L., He J., 2010. Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environ. Sci. Pollut. Res. Int., 17, 1237–1244. [CrossRef] [PubMed]
  • Liu Y., Liu Y., Ding Y., et al., 2014. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China. PLoS ONE, 9, e102000, DOI: 10.1371/journal.pone.0102000. [CrossRef] [PubMed]
  • Magalhães C.M., Machado A., Matos P., Bordalo A.A., 2011. Impact of copper on the diversity, abundance and transcription of nitrite and nitrous oxide reductase genes in an urban European estuary. FEMS Microbiol Ecol., 77, 274–284. [CrossRef] [PubMed]
  • Marinković V., Obradović L., Bugarin M. and Stojanović G., 2014. The impact of polluted wastewater on water quality of the Bor river and surrounding groundwater. Min. Metall. Eng. Bor, 3, 33–36. [CrossRef]
  • Markwiese J.T. and Colberg P.J., 2000, Bacterial reduction of copper-contaminated ferric oxide: copper toxicity and the interaction between fermentative and iron-reducing bacteria. Arch. Environ. Contam. Toxicol., 38, 139–46. [CrossRef] [PubMed]
  • Milijašević D., Milanović A., Brankov J. and Radovanović M., 2011. Water quality assessment of the Borska Reka River using the WPI (water pollution index) method. Arch. Biol. Sci. Belgrade, 63, 819–824. [CrossRef]
  • Muller I., Buisson E., Mouronval J.B. and Mesléard F., 2013. Temporary wetland restoration after rice cultivation: is soil transfer required for aquatic plant colonization? Knowl. Manag. Aquat. Ecosyst., 411, 03, DOI: 10.1051/kmae/2013067. [CrossRef] [EDP Sciences]
  • Muyzer G. and Stams A.J., 2008. The ecology and biotechnology of Sulfate-reducing bacteria. Nat. Rev. Microbiol., 6, 441–454. [PubMed]
  • Nikolić D., Milošević N., Mihajlović I., Živković Ž., Tasić V., Kovačević R. and Petrović N., 2010, Multicriteria analysis of air pollution with SO2 and PM10 in urban area around the copper smelter in Bor, Serbia. Water Air Soil Pollut., 206, 369–383. [CrossRef] [PubMed]
  • Obradović L., Bugarin M. and Marinković V., 2012. The effect of mine facilities on pollution the surrounding surface waterways, Min. Metall. Eng. Bor, 4, 191–196.
  • Panias D., 2006. Consequences of environmental issues on sustainability of metal industries in Europe: the case study of Bor. Metalurgija, 12, 239–250.
  • Petković S., 2009. The trace of roman metallurgy in eastern Serbia. J. Min. Metall., 45, 187–196. [CrossRef]
  • Petrovć J., Bugarin N., Bugarin M., Gardć V., Stevanovć Z. and Obradovć L., 2013. Pollution of air, water and soil from industrial products of the exploitation and processing of copper ore in Bor. 17th International Research/Expert Conference Trends in the Development of Machinery and Associated Technology, 277–280.
  • Pringault O., Viret H. and Duran R., 2010. Influence of microorganisms on the removal of nickel in tropical marine sediments (New Caledonia). Mar. Pollut. Bull., 61, 530–541. [CrossRef]
  • Ruyters S., Mertens J., T’Seyen I., Springael D., Smolders E., 2010, Dynamics of the nitrous oxide reducing community during adaptation to Zn stress in soil. Soil Biol. Biochem., 42, 1581–1587. [CrossRef]
  • Sakadevan K., Zheng H. and Bavor H., 1999. Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater. Water Sci. Technol., 40, 349–355. [CrossRef]
  • Serbula S.M., Antonijevic M.M., Milosevic N.M., Milic S.M. and Ilic A.A., 2010. Concentrations of particulate matter and arsenic in Bor (Serbia). J. Hazard Mater., 181, 43–51. [CrossRef] [PubMed]
  • Serbula S.M., Miljkovic D.D., Kovacevic R.M. and Ilic A.A., 2012. Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicol. Environ. Saf., 76, 209–214. [CrossRef] [PubMed]
  • Serbula S.M., Kalinovic T.S., Ilic A.A., Kalinovic J.V. and Steharnik M.M., 2013. Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aerosol. Air Qual. Res., 13, 563–573.
  • Shafie N.A., Aris A.Z., Zakaria M.P., Haris H., Lim W.Y. and Isa N.M., 2013. Application of geoaccumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments. Environ. Sci. Health A, 48, 182–190. [CrossRef]
  • Simić S., 2004. Changes in structure of the phytoplankton in the barje reservoir (Serbia). Kragujevac J. Sci., 26, 53–64.
  • Sobolev D. and Begonia M.F.T., 2008. Effects of Heavy Metal Contamination upon Soil Microbes: Lead-induced Changes in General and Denitrifying Microbial Communities as Evidenced by Molecular Markers. Int. J. Environ. Res. Public Health, 5, 450–456. [CrossRef] [PubMed]
  • Tamaki S. and Frankenberger W.T.Jr., 1992. Environmental biochemistry of arsenic. Rev. Environ. Contam. Toxicol., 124, 79–110. [PubMed]
  • Tangahu B.V., Abdullah S.R.S., Basri H., Idris M., Anuar N. and Mukhlisin M., 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng., ID 939161, 31 p., DOI: 10.1155/2011/939161.
  • Thiyagarajan V., Tsoi M.M., Zhang W. and Qian P.Y., 2010. Temporal variation of coastal surface sediment bacterial communities along an environmental pollution gradient. Mar. Environ. Res., 70, 56–64. [CrossRef] [PubMed]
  • UNESCO/WHO/UNEP, 1996. Water Quality Assessement–A guide to use of biota, sediments, and water in environmental monitoring. University Press, Cambridge.
  • Wei G., Fan L., Zhu W., Fu Y., Yu J. and Tang M., 2009. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. J. Hazard. Mater., 162, 50–56. [CrossRef] [PubMed]
  • Yisa J., Jacob J.O. and Onoyima C.C., 2012. Assessment of toxic levels of some heavy metals in road deposited sedimentts in Suleja, Nigeria. Am. J. Chem., 2, 34–37. [CrossRef]