Topical issue on Crayfish
Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 416, 2015
Topical issue on Crayfish
Article Number 25
Number of page(s) 14
Published online 05 October 2015
  • Bodin N., Le Loc’h F. and Hily C., 2007. Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. J. Exp. Mar. Biol. Ecol., 341, 168–175. [CrossRef]
  • Carolan J.V., Mazumder D., Dimovski C., Diocares R. and Twining J., 2012. Biokinetics and discrimination factors for δ13C and δ15N in the omnivorous freshwater crustacean, Cherax destructor. Mar. Freshwater Res., 63, 878–886. [CrossRef]
  • Church D.C. and Pond W.G., 1982. Basic animal nutrition and feeding. John Wiley & Sons, New York, USA.
  • Cortés-Jacinto E., Villarreal-Colmenares H., Civera-Cerecedo R. and Martinez-Córdova R., 2003. Effect of dietary protein level on growth and survival of juvenile freshwater crayfish Cherax quadricarinatus (Decapoda: Parastacidae). Aquacult. Nutr., 9, 207–213. [CrossRef]
  • D’Abramo L.R., Conclin D.E. and Akiyama D.M., (eds.) 1997. Crustacean nutrition. Advances in world aquaculture. Volume 6. The World Aquaculture Society, Baton Rouge, USA.
  • Davis D.A. and Robinson E.H. 1986. Estimation of the dietary lipid requirement level of the white crayfish Procambarus acutus acutus. J. World Aquacult. Soc., 17, 37–43. [CrossRef]
  • delRio C.M., Wolf N., Carleton S.A. and Gannes L.Z., 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev., 84, 91–111. [CrossRef]
  • Ercoli F., Ruokonen T.J., Hämäläinen H. and Jones R.I. 2014. Does the introduced signal crayfish occupy an equivalent trophic niche to the lost native noble crayfish in boreal lakes? Biol. Inv., 16, 2025–2036. [CrossRef]
  • Fantle M.S., Dittel A.I., Scwalm S.M., Epifanio C.E. and Fogel M.L., 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia, 120, 416–426. [CrossRef]
  • Fotedar R., 1999. Nutrition of Marron, Cherax tenuimanus (Smith), Under Different Culture Conditions–A Comparative Study. Doctoral Dissertation. Aquatic Science Research Unit, Curtin University, Perth, Western Australia.
  • Frazer T., Ross R., Quentin L. and Montoya J., 1997. Turnover of carbon and nitrogen during growth of larval krill, Euphausia superba Dana: a stable isotope approach. J. Exp. Mar. Biol. Ecol., 212, 259–275. [CrossRef]
  • Gannes L.Z., O’Brien D.M. and Martinez Del Rio C., 1997. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology, 78, 1271–1276. [CrossRef]
  • Grey J., 2006. The use of stable istope analyses in freshwater ecology: current awareness. Pol. J. Ecol., 54, 563–584.
  • Gruber C., Kortet R., Vainikka A., Hyvärinen P., Rantala M.J., Pikkarainen A., Jussila J., Makkonen J., Kokko H. and Hirvonen H., 2014. Variation in resistance to the invasive crayfish plague and immune defence in the native noble crayfish. Annal. Zool. Fenn., 51, 371–389. [CrossRef]
  • Gu H., Anderson A.J., Mather P.B. and Capra M.F. 1996. Effects of feeding level and starvation on growth and water and protein content in juvenile redclaw crayfish, Cherax quadricarinatus (von Martens). Mar. Freshwater Res., 47, 745–748. [CrossRef]
  • Hazlet B., Rubenstein D. and Rittschoff D. 1975 Starvation, energy reserves and aggression in the crayfish Orconectes virilis (Hagen, 1870) (decapoda, Camridae). Crustaceana, 28, 11–16. [CrossRef]
  • Hicks B.J., 1997. Food webs in forest and pasture streams in the Waikato region, New Zealand: A study based on analyses of stable isotopes of carbon and nitrogen, and fish gut contents. New Zeal. J. Mar. Fresh., 31, 651–664. [CrossRef]
  • Hobson K.A. and Clark R.G., 1992. Assessing avian diets using stable isotopes I: Turnover of 13C in tissues. The Condor, 94, 181–188. [CrossRef]
  • Holdich, D.M. (2002) Biology of freshwater crayfish. Blackwell Science Ltd. Osney, Mead, Oxford, England.
  • Jackson M.C., Jones T., Milligan M., Sheath D., Taylor J., Ellis A., England J. and Grey J., 2014. Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshw. Biol., 59, 1123–1135. [CrossRef]
  • Jones P.L. and Obst J.H. 2000. Effects of starvation and subsequent refeeding on the size and nutrient content of the hepatopancreas of Cherax destructor (Decapoda: Parastacidae). J. Crust. Biol., 20, 431– 441. [CrossRef]
  • Jussila J., 1997. Physiological responses of Astacid and Parastacid crayfishes (Crustacea: Decapoda) to conditions of intensive culture. Doctoral Dissertation. Faculty of Natural and Environmental Sciences, University of Kuopio, Finland.
  • Jussila J. and Mannonen A., 1997. Marron (Cherax tenuimanus) and noble crayfish (Astacus astacus) hepatopancreas energy and its relationship to moisture content. Aquaculture, 149, 157–161. [CrossRef]
  • Jussila J., Makkonen J. and Kokko H., 2011. Peracetic acid (PAA) treatment is an effective disinfectant against crayfish plague (Aphanomyces astaci) spores in aquaculture. Aquaculture, 320, 37–42. [CrossRef]
  • Jussila J., Makkonen J., Vainikka A., Kortet R. and Kokko H., 2014. Crayfish plague dilemma: how to be a corteous killer. Boreal Environ. Res., 19, 235–244.
  • Kankaala P., Taipale S., Li L. and Jones R.I., 2010. Diets of crustacean zooplankton, inferred from stable carbon and nitrogen isotope analyses, in lakes with varying allochthonous dissolved organic carbon content. Aquat. Ecol., 44, 781–795. [CrossRef]
  • Layman C.A., Arrington D.A., Montana C.G. and Post D.M., 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88, 42–48. [CrossRef] [PubMed]
  • Layman C.A., Araujo M.S., Boucek R., Hammerschlag-Peyer C.M., Harrison E., Jud Z.R., Matich P., Rosenblatt A.E., Vaudo J.J., Yeager L.A., Post D.M. and Bearhop S., 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev., 87, 545–562. [CrossRef]
  • López-López S., Nolasco H., Villarreal-Colmenares H. and Civera-Cerecedo R., 2005. Digestive enzyme response to supplemental ingredients in practical diets for juvenile freshwater crayfish Cherax quadricarinatus. Aquacult. Nutr., 11, 79–85. [CrossRef]
  • Makkonen J., 2013. The crayfish plague pathogen Aphanomyces astaci – genetic diversity and adaptation to the host species. Doctoral Dissertation. University of Eastern Finland, Faculty of Forestry and Natural Sciences, Kuopio, Finland.
  • Olsson K., Stenroth P., Nyström P. and Granéli W., 2009. Invasions and niche width: does niche width of an introduced crayfish differ from a native crayfish? Freshw. Biol., 54, 1731–1740. [CrossRef]
  • Parkyn S.M., Collier K.J. and Hicks B.J., 2001. New Zealand stream crayfish: functional omnivores but trophic predators? Freshw. Biol., 46, 641–652. [CrossRef]
  • Peterson B.J. and Fry B., 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18, 292–320. [CrossRef]
  • Post D.M., 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703–718. [CrossRef]
  • Roth B.M., Hein C.L. and Van der Zanden M.J. 2006. Using bioenergetics and stable isotopes to assess the trophic role of rusty crayfish (Orconectes rusticus) in lake littoral zones. Can. J. Fish. Aquat. Sci., 63, 335–344. [CrossRef]
  • Rudnick D. and Resh V. 2005. Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea. Freshw. Biol., 50, 1323–1336. [CrossRef]
  • Ruokonen T.J., Kiljunen M., Karjalainen J. and Hämäläinen H., 2012. Invasive crayfish increase habitat connectivity in large boreal lakes. Knowl. Manag. Aquat. Ecosyst., 407, 08. [CrossRef] [EDP Sciences]
  • Sánchez-Paz A., García-Carreño F., Muhlia-Almazán A., Peregrino-Uriarte A.B., Hernández-López J. and Yepiz-Plascencia G., 2006. Usage of energy reserves in crustaceans during starvation: Status and future directions. Insect Biochem. Molec., 36, 241–249. [CrossRef]
  • Saoud I.P., Garza De Yta A. and Ghanawi J., 2012. A review of nutritional biology and dietary requirements of red claw crayfish Cherax quadricarinatus (von Martens 1868). Aquacult. Nutr., 18, 349–368. [CrossRef]
  • Schmidt K., Atkinson A., Stuebing D., McClelland J., Montoya J. and Voss M. 2003. Trophic relationships among southern ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnol. Oceanography, 48, 277–289. [CrossRef]
  • Souty-Grosset C., Holdich D.M., Noël P.Y., Reynolds J.D. and Haffner P. (eds.), 2006. Atlas of crayfish in Europe. Muséum national d’Historie naturelle, Paris, France.
  • Stenroth P., Holmqvist N., Nyström P., Berglund O., Larsson P. and Granéli W., 2006. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): the influence of tissue, sample treatment, and season. Can. J. Fish. Aquat. Sci., 63, 821–831. [CrossRef]
  • Suring E. and Wing S.R., 2009. Isotopic turnover rate and fractionation in multiple tissues of red rock lobster (Jasus edwardsii) and blue cod (Parapercis colias): Consequences for ecological studies. J. Exp. Mar. Biol. Ecol., 370, 56–63. [CrossRef]
  • Syväranta J., Högmander P., Keskinen T., Karjalainen J. and Jones R.I., 2011. Altered energy flow pathways in a lake ecosystem following manipulation of fish community structure. Aquatic Sci., 73, 79–89. [CrossRef]
  • Vainikka A., Rantala M.J., Niemelä P., Hirvonen H. and Kortet R., 2011. Boldness as a consistent personality trait in the noble crayfish, Astacus astacus. Acta Ethol., 14, 17–25. [CrossRef]
  • Van der Zanden M.J., Casselman J.M. and Rasmussen J.B., 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature, 401, 464–467. [CrossRef]
  • Van der Zanden M.J., Vadeboncoeur Y., Diebel M.W. and Jeppesen E., 2005. Primary consumer stable nitrogen isotopes as indicators of nutrient source. Envir. Sci. Tech., 39, 7509–7515. [CrossRef] [PubMed]
  • Yokoyama H., Tamaki A., Harada K., Shimoda K., Koyama K. and Ishihi Y., 2005. Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Mar. Ecol. Prog. Ser., 296, 115–128. [CrossRef]