Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 416, 2015
Article Number 02
Number of page(s) 15
Published online 15 January 2015
  • Ács E., Kiss K.T., Szabó K. and Makk J., 2000. Short-term colonization sequence of periphyton on glass slides in a large river River Danube, near Budapest. Arch.Hydrobiol.Suppl. 136, Algol.Stud., 100, 135–156.
  • Albay M. and Akçaalan R., 2008. Effects of water quality and hydrologic drivers on periphyton colonization on Sparganium erectum in two Turkish lakes with different mixing regimes. Environ.Monit.Assess., 146, 171–181. [CrossRef]
  • Anagnostidis K. and Komárek J., 1985. Modern approach to the classification system ofcyanophytes. 1. Introduction. Algol. Stud. Arch. Hydrobiol. Suppl., 71, 291–302.
  • Anagnostidis K. and Komárek J., 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Algol. Stud. Arch. Hydrobiol. Suppl., 80, 327–472.
  • APHA (American Public Health Association), 1992. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.
  • Azim M.E. and Asaeda T., 2005. Periphyton: structure, diversity and colonization. In: Azim M.E., Verdegem M.C.J., van Dam A.A. and Beveridge M.C.M. (eds.), Periphyton: ecology, exploitation and management. CABI Publishing, Wallingford, UK, 15–33.
  • Biggs B.J.F., Stevenson R.J. and Lowe R.L., 1998. A habitat matrix conceptual model for stream periphyton. Arch.Hydrobiol., 143, 21–56.
  • Borges F.R. and Necchi Jr. O., 2008. Short-term successional dynamics of a macroalgal community in a stream from northwestern São Paulo State, Brazil. Acta Bot.Bras., 22, 453–463. [CrossRef]
  • Branco C.C.Z., Branco L.H.Z., Moura M.O. and Bertusso F.R., 2005. The succession dynamics of a macroalgal community after a flood disturbance in a tropical stream from São Paulo State, southeastern Brazil. Revista.Brasil.Bot., 28, 267–275.
  • Buczkó K. and Rajczy M., 2001. Changes of attached diatoms in a dead arm of the Danube between 1992–1999 at Ásványráró (Szigetköz section). Studia Bot.Hung., 32, 39–61.
  • Clarke K.R. and Warwick R.M., 2001. Change in marine communities: An approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth.
  • Dunck B., Nogueira I.S. and Felisberto S.A., 2013. Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil. Braz. J. Biol., 73, 331–346.
  • European Water Framework Directive 2000: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. EN Official Journal of the European Communities L327,, 72.
  • Ferreiro N., Giorgi A. and Feijoó C., 2013. Effects of macrophyte architecture and leaf shape complexity on structural parameters of the epiphytic algal community in a Pampean stream. Aquat.Ecol., 47, 389–401. [CrossRef]
  • Giorgi A., Feijoó C. and Tell G., 2005. Primary producers in a Pampean stream: temporal variation and structuring role. Biodivers.Conserv., 14, 1699–1718. [CrossRef]
  • Gottlieb A.D., Richards J.H. and Gaiser E.E., 2006. Comparative study of periphyton community structure in long and short-hydroperiod Everglades marshes. Hydrobiologia, 569, 195–207. [CrossRef]
  • Guiry M.D. and Guiry G.M., 2012. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.; searched on October, 2012.
  • Hindak F., Cyrus Z., Marvan P., Javornicky P., Komárek J., Etll H., Rosa K., Sladečkova A., Popovsky J., Punčocharova M. and Lhotsky O., 1978. Slatkovodne riasy. Slovenske pedagogicke nakladelstvo, Bratislava.
  • Huber-Pestalozzi G., 1962. Das Phytoplankton des Süßwassers. Systematik und Biologie. Teil. 2. E. Schweizerbart’śche Verlagsbuchhandlung (Erwin Nägele), Stuttgart.
  • Hustedt F., 1976. Bacillariophyta. Otto Koeltz Science Publishers, Koenigstein.
  • Komárek J. and Anagnostidis K., 1989. Modern approach to the classification system of cyanophytes. 4. Nostocales. Algol. Stud. Arch. Hydrobiol. Suppl., 56, 247–345.
  • Larned S.T., 2010. A prospectus for periphyton: recent and future ecological research. J. N. Am.Benthol.Soc., 29, 182–206. [CrossRef]
  • Lepš J. and Šmilauer P., 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, New York.
  • Lorenzen C.J., 1967. Determination of chlorophyll and phaeo-pigments spectrophotometric equations. In: Dykyová D. (ed.), Metody studia ecosystémù, Academia Praha, Praha, 336.
  • McCormick P.V., Shuford III R.B.E., Backus J.G. and Kennedy W.C., 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USA. Hydrobiologia, 362, 185–208. [CrossRef]
  • Mihaljević M. and Stević F., 2011. Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquat.Ecol., 45, 335–349. [CrossRef]
  • Mihaljević M. and Žuna Pfeiffer T., 2012. Colonization of periphyton algae in a temperate floodplain lake under a fluctuating spring hydrological regime. Fundam.Appl.Limnol., 180, 13–25.
  • Mihaljević M., Stević F., Horvatić J. and Hackenberger Kutuzović B., 2009. Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia, 618, 77–88. [CrossRef]
  • Mihaljević M., Stević F., Špoljarić D. and Žuna Pfeiffer T., 2014. Spatial pattern of phytoplankton based on the morphology-based functional approach along a river-floodplain gradient. River Res.Appl., DOI: 10.1002/rra.2739.
  • Moresco C. and Rodrigues L., 2010. Structure and dynamics of the periphytic algae community of Iraí reservoir, Paraná State, Brazil. Acta Sci.Biol. Sci., 32, 23–30.
  • Murakami E.A., Bicudo D.C. and Rodrigues L., 2009. Periphytic algae of the Garças Lake, Upper Paraná River floodplain: comparing the years 1994 and 2004. Braz. J. Biol., 69, 459–468. [CrossRef] [PubMed]
  • Pan Y., Hughes R.M., Herlihy A.T. and Kaufmann P.R., 2012. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA. Hydrobiologia, 684, 241–260. [CrossRef]
  • Passy S.I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat. Bot. 86, 171–178. [CrossRef]
  • Peterson G.C. and Stevenson R.J., 1992. Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology, 73, 1445–1461. [CrossRef]
  • Rimet F. and Bouchez A., 2011. Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: Lotic mesocosm approaches. Ecol.Indic., 11, 489–499. [CrossRef]
  • Rimet F. and Bouchez A., 2012. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl. Managt. Aquatic Ecosyst., 406, 01. [CrossRef] [EDP Sciences]
  • Schneck F. and Melo A.S., 2012. Hydrological disturbance intensity overrides substrate roughness effects on the resistance and resilience of stream benthic algae. Freshw.Biol., 57, 1678–1688. [CrossRef]
  • Schwarz U., 2005. Landschaftsökologische Charakterisierung des Kopački Rit unter besonderer Berücksichtigung von Flusslandschaftsformen sowie deren Genese und Typologie. Dissertation. University of Wien.
  • Shannon C.E. and Weaver W., 1949. The Mathematical Theory of Communication. University Illionis Press, Urbana, USA, 117.
  • Stanley E.H., Powers S.M. and Lottig N.R., 2010. The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. J. N. Am.Benthol.Soc., 29, 67–83. [CrossRef]
  • Stenger-Kovács C., Padisák J. and Bíró P., 2006. Temporal variability of Achnanthidium minutissimum (Kützing) Czarnecki and its relationship to chemical and hydrological features of the Torna-stream, Hungary. 6th International Symposium on Use of algae for monitoring rivers. Hungary, Balatonfüred, 133–138.
  • Stenger-Kovács C., Lengyel E., Crossetti L.O., Üvegesa V. and Padisák J., 2013. Diatom ecological guilds as indicators of temporally changing stressors and disturbances in the small Torna-stream, Hungary. Ecol. Indic., 24, 138–147. [CrossRef]
  • Stevenson R.J., 1996. An introduction to algal ecology in freshwater benthic habitats. In: Stevenson R.J., Bothwell M.L. and Lowe R.L. (eds.), Algal ecology, freshwater benthic ecosystems, Academic Press, San Diego, 3–33.
  • Stilinović B. and Plenković-Moraj A., 1995. Bacterial and phytoplanktonic research of Ponikve artificial lake on the island of Krk. Period.Biol., 97, 351–358.
  • Strickland J.D.H. and Parsons T.R., 1968. A practical hand-book of seawater analysis. Bull. Fish. Res. Board Can., 167, 1–310.
  • Tockner K. and Stanford J.A., 2002. Riverine floodplains: present state and future trends. Environ.Conserv., 29, 308–330. [CrossRef]
  • Tockner K., Pusch M., Borchardt D. and Lorang M.S., 2010. Multiple stressors in coupled river-floodplain ecosystems. Freshw.Biol., 55, 135–151. [CrossRef]
  • UNESCO, 1966. Determinations of photosynthetic pigments in seawater. Report of SCOR – UNESCO Working Group 17. Monographs on Oceanographic Methodology, Paris, 69.
  • van Donk E. and van de Bund W.J., 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot., 72, 261–274. [CrossRef]
  • Weitzel R.L., 1979. Periphyton Measurements and Applications. In: Weitzel R.L. (ed.), Methods and measurements of periphyton communities: a review, American society for testing and materials, Baltimore, 3–33.
  • Žuna Pfeiffer T., Mihaljević M., Stević F. and Špoljarić D., 2013. Periphytic algae colonization driven by variable environmental components in a temperate floodplain lake. Ann.Limnol. - Int. J . Lim., 49, 179–190. [CrossRef] [EDP Sciences]